Skip to main content

Estimation of Photorespiratory Fluxes by Gas Exchange

  • Protocol
  • First Online:
Photorespiration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1653))

  • 1193 Accesses

Abstract

Photorespiratory fluxes can be easily estimated by photosynthetic gas exchange using an infrared gas analyzer and applying the Farquhar, von Caemmerer, and Berry (Farquhar et al. Planta 149:78–90, 1980) photosynthesis model. For a more direct measurement of photorespiratory CO2 release from glycine decarboxylation, infrared gas analysis can be coupled to membrane-inlet mass spectrometry, capable of separating the total CO2 concentration into its 12CO2 and 13CO2 components in a continuous online fashion. This chapter discusses how to calculate rates of photorespiration from Rubisco kinetics and describes in detail a method for measuring the CO2 release from glycine decarboxylation using 13CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Busch FA (2013) Current methods for estimating the rate of photorespiration in leaves. Plant Biol 15(4):648–655. doi:10.1111/j.1438-8677.2012.00694.x

    Article  CAS  PubMed  Google Scholar 

  2. Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73(1):147–152

    Article  CAS  Google Scholar 

  3. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90

    Article  CAS  PubMed  Google Scholar 

  4. Cousins AB, Walker BJ, Pracharoenwattana I, Smith SM, Badger MR (2011) Peroxisomal hydroxypyruvate reductase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Photosynth Res 108(2–3):91–100. doi:10.1007/s11120-011-9651-3

    Article  CAS  PubMed  Google Scholar 

  5. Abadie C, Boex-Fontvieille ERA, Carroll AJ, Tcherkez G (2016) In vivo stoichiometry of photorespiratory metabolism. Nat Plants 2:15220. doi:10.1038/nplants.2015.220

    Article  CAS  PubMed  Google Scholar 

  6. Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194:70–84. doi:10.1016/j.plantsci.2012.05.009

    Article  PubMed  Google Scholar 

  7. von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38(4):629–637. doi:10.1111/pce.12449

    Article  Google Scholar 

  8. Xiong D, Liu XI, Liu L, Douthe C, Li Y, Peng S, Huang J (2015) Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ 38:2541–2550. doi:10.1111/pce.12558

    Article  CAS  PubMed  Google Scholar 

  9. Warren C (2006) Estimating the internal conductance to CO2 movement. Funct Plant Biol 33(5):431–442. doi:10.1071/fp05298

    Article  CAS  Google Scholar 

  10. Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60(8):2217–2234. doi:10.1093/jxb/erp081

    Article  CAS  PubMed  Google Scholar 

  11. Busch FA, Sage RF (2016) The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New Phytol. doi:10.1111/nph.14258

  12. Whitney SM, von Caemmerer S, Hudson GS, Andrews TJ (1999) Directed mutation of the Rubisco large subunit of tobacco influences photorespiration and growth. Plant Physiol 121(2):579–588. doi:10.1104/pp.121.2.579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36(1):200–212. doi:10.1111/j.1365-3040.2012.02567.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.A.B. is supported by funding from the ARC Centre of Excellence for Translational Photosynthesis awarded to Graham Farquhar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian A. Busch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Busch, F.A., Deans, R.M., Holloway-Phillips, MM. (2017). Estimation of Photorespiratory Fluxes by Gas Exchange. In: Fernie, A., Bauwe, H., Weber, A. (eds) Photorespiration. Methods in Molecular Biology, vol 1653. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7225-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7225-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7224-1

  • Online ISBN: 978-1-4939-7225-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics