Skip to main content

Purification of mRNA Processing Complexes Using an RNA Affinity Approach

  • Protocol
  • First Online:
mRNA Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1648))

Abstract

Multiple mRNA processing steps, including splicing and 3′ processing, take place in macromolecular complexes that contain many proteins and sometimes RNA molecules. A key challenge in the mRNA processing field has been to define the structure-function relationship of these sophisticated molecular machines. A prerequisite for addressing this challenge is to develop tools for purifying mRNA processing complexes in their native and intact forms that are suitable for functional and structural studies. Among many methods that have been developed, RNA affinity-based methods are most widely applied. In these methods, RNA molecules that are substrates to mRNA processing machineries are fused with an affinity tag, incubated with cellular extracts/lysates to allow for the assembly of mRNA processing complexes, and finally the assembled complexes are purified using RNA affinity tag. In this chapter, we will overview RNA affinity-based purification methods and describe in detail one such method, MS2-tagging, and its application in the purification of mRNA 3′ processing complexes. Although these methods were originally developed for purifying mRNA processing complexes, they should be applicable to purification of other RNA-protein complexes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Will CL, Luhrmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3(7):a003707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, Frank J, Manley JL (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33(3):365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15(2):108–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grote M, Wolf E, Will CL, Lemm I, Agafonov DE, Schomburg A, Fischle W, Urlaub H, Luhrmann R (2010) Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol 30(9):2105–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khanna M, Van Bakel H, Tang X, Calarco JA, Babak T, Guo G, Emili A, Greenblatt JF, Hughes TR, Krogan NJ, Blencowe BJ (2009) A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300. RNA 15(12):2174–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tardiff DF, Rosbash M (2006) Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly. RNA 12(6):968–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y (2015) Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349(6253):1182–1191

    Article  CAS  PubMed  Google Scholar 

  8. Leppek K, Stoecklin G (2014) An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res 42(2):e13

    Article  CAS  PubMed  Google Scholar 

  9. Iioka H, Loiselle D, Haystead TA, Macara IG (2011) Efficient detection of RNA-protein interactions using tethered RNAs. Nucleic Acids Res 39(8):e53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartmuth K, Urlaub H, Vornlocher HP, Will CL, Gentzel M, Wilm M, Luhrmann R (2002) Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method. Proc Natl Acad Sci U S A 99(26):16719–16724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keryer-Bibens C, Barreau C, Osborne HB (2008) Tethering of proteins to RNAs by bacteriophage proteins. Biol Cell 100(2):125–138

    Article  CAS  PubMed  Google Scholar 

  12. Rodgers JT, Patel P, Hennes JL, Bolognia SL, Mascotti DP (2000) Use of biotin-labeled nucleic acids for protein purification and agarose-based chemiluminescent electromobility shift assays. Anal Biochem 277(2):254–259

    Article  CAS  PubMed  Google Scholar 

  13. Hou S, Shi L, Lei H (2016) Biotin-streptavidin affinity purification of RNA-protein complexes assembled in vitro. Methods Mol Biol 1421:23–34

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Z, Sim J, Griffith J, Reed R (2002) Purification and electron microscopic visualization of functional human spliceosomes. Proc Natl Acad Sci U S A 99(19):12203–12207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bessonov S, Anokhina M, Will CL, Urlaub H, Luhrmann R (2008) Isolation of an active step I spliceosome and composition of its RNP core. Nature 452(7189):846–850

    Article  CAS  PubMed  Google Scholar 

  16. Yoshimoto R, Kataoka N, Okawa K, Ohno M (2009) Isolation and characterization of post-splicing lariat-intron complexes. Nucleic Acids Res 37(3):891–902

    Article  CAS  PubMed  Google Scholar 

  17. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11(5):1475–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from the National Institutes of Health (GM090056 and CA177651) and the American Cancer Society (RSG-12-186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, X., Shi, Y. (2017). Purification of mRNA Processing Complexes Using an RNA Affinity Approach. In: Shi, Y. (eds) mRNA Processing. Methods in Molecular Biology, vol 1648. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7204-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7204-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7203-6

  • Online ISBN: 978-1-4939-7204-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics