Skip to main content

Single-Molecule Analysis of Pre-mRNA Splicing with Colocalization Single-Molecule Spectroscopy (CoSMoS)

  • Protocol
  • First Online:
mRNA Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1648))

Abstract

Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217–241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A 74(8):3171–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chow LT, Gelinas RE, Broker TR, Roberts RJ (1977) An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12(1):1–8

    Article  CAS  PubMed  Google Scholar 

  3. Walter NG, Huang CY, Manzo AJ, Sobhy MA (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5(6):475–489. doi:10.1038/nmeth.1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ha T (2014) Single-molecule methods leap ahead. Nat Methods 11(10):1015–1018. doi:10.1038/nmeth.3107

    Article  CAS  PubMed  Google Scholar 

  5. Crawford DJ, Hoskins AA, Friedman LJ, Gelles J, Moore MJ (2008) Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA 14(1):170–179. doi:10.1261/rna.794808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abelson J, Blanco M, Ditzler MA, Fuller F, Aravamudhan P, Wood M, Villa T, Ryan DE, Pleiss JA, Maeder C, Guthrie C, Walter NG (2010) Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat Struct Mol Biol 17(4):504–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoskins AA, Friedman LJ, Gallagher SS, Crawford DJ, Anderson EG, Wombacher R, Ramirez N, Cornish VW, Gelles J, Moore MJ (2011) Ordered and dynamic assembly of single spliceosomes. Science 331(6022):1289–1295. doi:10.1126/science.1198830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crawford DJ, Hoskins AA, Friedman LJ, Gelles J, Moore MJ (2013) Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site. Proc Natl Acad Sci U S A 110(17):6783–6788. doi:10.1073/pnas.1219305110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krishnan R, Blanco MR, Kahlscheuer ML, Abelson J, Guthrie C, Walter NG (2013) Biased Brownian ratcheting leads to pre-mRNA remodeling and capture prior to first-step splicing. Nat Struct Mol Biol 20(12):1450–1457. doi:10.1038/nsmb.2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shcherbakova I, Hoskins AA, Friedman LJ, Serebrov V, Correa IR Jr, Xu MQ, Gelles J, Moore MJ (2013) Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy. Cell Rep 5(1):151–165. doi:10.1016/j.celrep.2013.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoskins AA, Rodgers ML, Friedman LJ, Gelles J, Moore MJ (2016) Single molecule analysis reveals reversible and irreversible steps during spliceosome activation. Elife 5. doi:10.7554/eLife.14166

  12. Semlow DR, Blanco MR, Walter NG, Staley JP (2016) Spliceosomal DEAH-box ATPases remodel pre-mRNA to activate alternative splice sites. Cell 164(5):985–998. doi:10.1016/j.cell.2016.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson EG, Hoskins AA (2014) Single molecule approaches for studying spliceosome assembly and catalysis. Methods Mol Biol 1126:217–241. doi:10.1007/978-1-62703-980-2_17

    Article  CAS  PubMed  Google Scholar 

  14. Huang Z, Szostak JW (1996) A simple method for 3′-labeling of RNA. Nucleic Acids Res 24(21):4360–4361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson JP, Angerer B, Loeb LA (2005) Incorporation of reporter-labeled nucleotides by DNA polymerases. BioTechniques 38(2):257–264

    Article  CAS  PubMed  Google Scholar 

  16. Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A 78(11):6633–6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gebeyehu G, Rao PY, SooChan P, Simms DA, Klevan L (1987) Novel biotinylated nucleotide–analogs for labeling and colorimetric detection of DNA. Nucleic Acids Res 15(11):4513–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boyle A, Perry-O'Keefe H (2001) Labeling and colorimetric detection of nonisotopic probes. Curr Protoc Mol Biol Chapter 3:Unit3 18. doi:10.1002/0471142727.mb0318s20

  19. Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V (2015) Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell 162(1):84–95. doi:10.1016/j.cell.2015.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferre-D'Amare AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24(5):977–978

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kao C, Zheng M, Rudisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5(9):1268–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wichlacz A, Legiewicz M, Ciesiolka J (2004) Generating in vitro transcripts with homogenous 3′ ends using trans-acting antigenomic delta ribozyme. Nucleic Acids Res 32(3):e39. doi:10.1093/nar/gnh037

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schurer H, Lang K, Schuster J, Morl M (2002) A universal method to produce in vitro transcripts with homogeneous 3′ ends. Nucleic Acids Res 30(12):e56

    Article  PubMed  PubMed Central  Google Scholar 

  24. Di Tomasso G, Salvail-Lacoste A, Bouvette J, Omichinski JG, Legault P (2014) Affinity purification of in vitro transcribed RNA with homogeneous ends using a 3′-ARiBo tag. Methods Enzymol 549:49–84. doi:10.1016/B978-0-12-801122-5.00003-9

    Article  PubMed  Google Scholar 

  25. Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56(4):343–349. doi:10.1111/jipb.12152

    Article  CAS  PubMed  Google Scholar 

  26. Pyle AM, Chu VT, Jankowsky E, Boudvillain M (2000) Using DNAzymes to cut, process, and map RNA molecules for structural studies or modification. Methods Enzymol 317:140–146

    Article  CAS  PubMed  Google Scholar 

  27. Lapham J, Crothers DM (1996) RNase H cleavage for processing of in vitro transcribed RNA for NMR studies and RNA ligation. RNA 2(3):289–296

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Baklanov MM, Golikova LN, Malygin EG (1996) Effect on DNA transcription of nucleotide sequences upstream to T7 promoter. Nucleic Acids Res 24(18):3659–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Friedman LJ, Gelles J (2015) Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86:27–36. doi:10.1016/j.ymeth.2015.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Joerg E. Braun acknowledges funding from the Human Frontier Science Program (HFSP) LT000166/2013. Joerg E. Braun and Victor Serebrov are supported by funding to the laboratory of Melissa J. Moore: University of Massachusetts Medical School, Investigator of the Howard Hughes Medical Institute and NIH R01 GM50037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg E. Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Braun, J.E., Serebrov, V. (2017). Single-Molecule Analysis of Pre-mRNA Splicing with Colocalization Single-Molecule Spectroscopy (CoSMoS). In: Shi, Y. (eds) mRNA Processing. Methods in Molecular Biology, vol 1648. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7204-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7204-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7203-6

  • Online ISBN: 978-1-4939-7204-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics