Skip to main content

Purification of Transcript-Specific mRNP Complexes Formed In Vivo from Saccharomyces cerevisiae

  • Protocol
  • First Online:
mRNA Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1648))

Abstract

RNA binding proteins play critical roles in shaping the complex life cycle of cellular transcripts. For most RNAs, the association with a distinct complement of proteins serves to orchestrate its unique pattern of maturation, localization, translation, and stability. A key aspect to understanding how transcripts are differentially regulated lies, therefore, in the ability to identify the particular repertoire of protein binding partners associated with an individual transcript. We describe here an optimized experimental procedure for purifying a single mRNA population from yeast cells for the characterization of transcript-specific mRNA-protein complexes (mRNPs) as they exist in vivo. Chemical cross-linking is used to trap native mRNPs and facilitate the co-purification of protein complexes associated with an individual transcript population that is captured under stringent conditions from cell lysates through hybridization to complementary DNA oligonucleotides. The resulting mRNP is highly enriched and largely devoid of non-target transcripts, and can be used for a number of downstream analyses including protein identification by mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Muller-McNicoll M, Neugebauer KM (2013) How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat Rev Genet 14(4):275–287. doi:10.1038/nrg3434

    Article  PubMed  Google Scholar 

  2. Singh G, Pratt G, Yeo GW, Moore MJ (2015) The clothes make the mRNA: past and present trends in mRNP fashion. Annu Rev Biochem 84:325–354. doi:10.1146/annurev-biochem-080111-092106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McHugh CA, Russell P, Guttman M (2014) Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol 15:203. doi:10.1186/gb4152

    Article  PubMed  PubMed Central  Google Scholar 

  4. Riley KJ, Steitz JA (2013) The “Observer Effect” in genome-wide surveys of protein-RNA interactions. Mol Cell 49(4):601–604. doi:10.1016/j.molcel.2013.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10(11):1692–1694. doi:10.1261/rna.7151404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riley KJ, Yario TA, Steitz JA (2012) Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA 18(9):1581–1585. doi:10.1261/rna.034934.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Darnell R (2012) CLIP (cross-linking and immunoprecipitation) identification of RNAs bound by a specific protein. Cold Spring Harb Protoc 2012(11):1146–1160. doi:10.1101/pdb.prot072132

    Article  PubMed  Google Scholar 

  8. Van Nostrand EL, Huelga SC, Yeo GW (2016) Experimental and computational considerations in the study of RNA-binding protein-RNA interactions. Adv Exp Med Biol 907:1–28. doi:10.1007/978-3-319-29073-7_1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bardwell VJ, Wickens M (1990) Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res 18(22):6587–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hogg JR, Collins K (2007) RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 13(6):868–880. doi:10.1261/rna.565207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walker SC, Scott FH, Srisawat C, Engelke DR (2008) RNA affinity tags for the rapid purification and investigation of RNAs and RNA-protein complexes. Methods Mol Biol 488:23–40. doi:10.1007/978-1-60327-475-3_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Said N, Rieder R, Hurwitz R, Deckert J, Urlaub H, Vogel J (2009) In vivo expression and purification of aptamer-tagged small RNA regulators. Nucleic Acids Res 37(20):e133. doi:10.1093/nar/gkp719

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yoon JH, Gorospe M (2016) Identification of mRNA-interacting factors by MS2-TRAP (MS2-tagged RNA affinity purification). Methods Mol Biol 1421:15–22. doi:10.1007/978-1-4939-3591-8_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46(5):674–690. doi:10.1016/j.molcel.2012.05.021

    Article  CAS  PubMed  Google Scholar 

  15. Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149(6):1393–1406. doi:10.1016/j.cell.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell SF, Jain S, She M, Parker R (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20(1):127–133. doi:10.1038/nsmb.2468

    Article  CAS  PubMed  Google Scholar 

  17. Matia-Gonzalez A, Laing E, Gerber A (2015) Conserved mRNA-binding proteomes in eukaryotic cells. Nat Struct Mol Biol 22(12):1027–1033. doi:10.1038/nsmb.3128

    Article  CAS  PubMed  Google Scholar 

  18. Beckmann BM, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume AM, Schwarzl T, Curk T, Foehr S, Huber W, Krijgsveld J, Hentze MW (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun 6:10127. doi:10.1038/ncomms10127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, Curk T, Krijgsvelt J, Hentze MW (2016) Comprehensive identification of RNA-binding domains in human cells. Mol Cell 63(4):696–710. doi:10.1016/j.molcel.2016.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liao Y, Castello A, Fischer B, Leicht S, Foehr S, Frese CK, Ragan C, Kurscheid S, Pagler E, Yang H, Krijgsvelt J, Hentze MW, Preiss T (2016) The cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep 15(5):1456–1469. doi:10.1016/j.celrep.2016.06.084

    Article  Google Scholar 

  21. Chu C, Zhang QC, da Rocha ST, Flynn RA, Baradwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY (2015) Systematic discovery of Xist RNA binding proteins. Cell 161(2):404–416. doi:10.1016/j.cell.2015.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moardian A, Sweredoski MJ, Shishkin AA, Su J, Lander ES, Hess S, Plath K, Guttman M (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521(7551):232–236. doi:10.1038/nature14443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26(2):182–190. doi:10.1016/S1046-2023(02)00021-X

    Article  CAS  PubMed  Google Scholar 

  24. Smith JE, Whiteside DL, Smith-Kinnaman WR, Mosley AL, Baker KE (In preparation) mRNP analysis of an NMDsensitive mRNA in yeast implicates UPF1 as the sensor for substrate recognition

    Google Scholar 

Download references

Acknowledgments

We thank Tim Nilsen and members of his lab for providing helpful suggestions during the development of this method. Jeff Coller and Coller lab member, Najwa Alhusaini, provided helpful comments and critical reading of this manuscript. Mass spectrometry and identification of protein components within our transcript-specific mRNPs was achieved in collaboration with Amber Mosley and Whitney Smith-Kinnaman in the Department of Biochemistry and Molecular Biology at the Indiana University School of Medicine. This work was supported by funding by the National Institute of General Medical Sciences (GM095621 to K.E.B.; T32 GM008056 to J.E.S.) and the National Science Foundation (NSF1253788 to K.E.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian E. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Smith, J.E., Baker, K.E. (2017). Purification of Transcript-Specific mRNP Complexes Formed In Vivo from Saccharomyces cerevisiae . In: Shi, Y. (eds) mRNA Processing. Methods in Molecular Biology, vol 1648. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7204-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7204-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7203-6

  • Online ISBN: 978-1-4939-7204-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics