Skip to main content

Rapid Detection of γ-H2Av Foci in Ex Vivo MMS-Treated Drosophila Imaginal Discs

  • Protocol
  • First Online:
Fast Detection of DNA Damage

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1644))

Abstract

In Drosophila melanogaster, DNA double-strand breaks (DSBs) created by exposure to gamma or X-ray radiation can be quantified by immunofluorescent detection of phosphorylated histone H2Av (γ-H2Av) foci in imaginal disc tissues. This technique has been less useful for studying DSBs in imaginal discs exposed to DSB-inducing chemicals, since standard protocols require raising larvae in food treated with liquid chemical suspensions. These protocols typically take 3–4 days to complete and result in heterogeneous responses that do not provide information about the kinetics of DSB formation and repair. Here, we describe a novel and rapid method to quantify DSBs in imaginal discs cultured ex vivo with methyl methanesulfonate (MMS) or other DSB-inducing chemicals. The described method requires less than 24 h and provides precise control over MMS concentration and exposure time, enabling reproducible detection of transient DSBs. Furthermore, this technique can be used for nearly any chemical treatment and can be modified and adapted for several different experimental setups and downstream molecular analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghosal G, Chen J (2013) DNA damage tolerance: a double-edged sword guarding the genome. Trans Cancer Res 2:107–129. doi:10.3978/j.issn.2218-676X.2013.04.01

    CAS  Google Scholar 

  2. Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219. doi:10.1038/nrm2852

    Article  CAS  PubMed  Google Scholar 

  3. Lundin C, North M, Erixon K et al (2005) Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res 33:3799–3811. doi:10.1093/nar/gki681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beranek DT (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res 231:11–30

    Article  CAS  PubMed  Google Scholar 

  5. Tercero JA, Diffley JF (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412:553–557. doi:10.1038/35087607

    Article  CAS  PubMed  Google Scholar 

  6. Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12:104–120. doi:10.1038/nrc3185

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Eeken JC, Romeijn RJ, de Jong AW, Pastink A, Lohman PH (2001) Isolation and genetic characterisation of the Drosophila homologue of (SCE)REV3, encoding the catalytic subunit of DNA polymerase zeta. Mutat Res 485:237–253. doi:10.1016/S0921-8777(01)00062-3

    Article  CAS  PubMed  Google Scholar 

  8. Ravi D, Wiles AM, Bhavani S, Ruan J, Leder P, Bishop AJR (2009) A network of conserved damage survival pathways revealed by a genomic RNAi screen. PLoS Genet 5:e1000527. doi:10.1371/journal.pgen.1000527

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henderson DS, Grigliatti TA (1992) A rapid somatic Genotoxicity assay in Drosophila-Melanogaster using multiple mutant mutagen-sensitive (Mus) strains. Mutagenesis 7:399–405. doi:10.1093/mutage/7.6.399

    Article  CAS  PubMed  Google Scholar 

  10. Cohen SM (1993) Imaginal disc development. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, vol 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 747–841

    Google Scholar 

  11. Klein T (2008) Immunolabeling of imaginal discs. Methods Mol Biol 420:253–263. doi:10.1007/978-1-59745-583-1_15

    Article  CAS  PubMed  Google Scholar 

  12. Brodsky MH, Sekelsky JJ, Tsang G et al (2000) mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev 14:666–678

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bilak A, Uyetake L, TT S (2014) Dying cells protect survivors from radiation-induced cell death in Drosophila. PLoS Genet 10:e1004220. doi:10.1371/journal.pgen.1004220

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wells BS, Johnston LA (2012) Maintenance of imaginal disc plasticity and regenerative potential in Drosophila by p53. Dev Biol 361:263–276. doi:10.1016/j.ydbio.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  15. Gatti M, Santini G, Pimpinelli S, Olivieri G (1979) Lack of spontaneous sister chromatid exchanges in somatic cells of Drosophila melanogaster. Genetics 91:255–274

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Madigan JP, Chotkowski HL, Glaser RL (2002) DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res 30:3698–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adler PN, MacQueen M (1984) Cell proliferation and DNA replication in the imaginal wing disc of Drosophila melanogaster. Dev Biol 103:28–37

    Article  CAS  PubMed  Google Scholar 

  18. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  19. Forster B, Van De Ville D, Berent J, Sage D, Unser M (2004) Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images. Microsc Res Tech 65:33–42. doi:10.1002/jemt.20092

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitch McVey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Khodaverdian, V.Y., McVey, M. (2017). Rapid Detection of γ-H2Av Foci in Ex Vivo MMS-Treated Drosophila Imaginal Discs. In: Didenko, V. (eds) Fast Detection of DNA Damage. Methods in Molecular Biology, vol 1644. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7187-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7187-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7185-5

  • Online ISBN: 978-1-4939-7187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics