Skip to main content

Single-Cell Imaging of ERK Signaling Using Fluorescent Biosensors

  • Protocol
  • First Online:
Kinase Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1636))

Abstract

Single-cell analysis of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) provides a means to perform highly detailed kinetic studies, assess heterogeneity between cells, and distinguish the subcellular localization of ERK activity. We describe here the methods needed to perform such measurements in a cell type of the investigator’s choosing. We discuss the selection of appropriate reporters and provide detailed methods for stably introducing reporters, collecting live-cell data, and automatically extracting quantitative information from individual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43(7):553–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Purvis JE, Lahav G (2013) Encoding and decoding cellular information through signaling dynamics. Cell 152(5):945–956. doi:10.1016/j.cell.2013.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shankaran H, Ippolito DL, Chrisler WB, Resat H, Bollinger N, Opresko LK, Wiley HS (2009) Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol Syst Biol 5:332. doi:10.1038/msb.2009.90

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U (2009) Dynamics and variability of ERK2 response to EGF in individual living cells. Mol Cell 36(5):885–893. doi:10.1016/j.molcel.2009.11.025

    Article  CAS  PubMed  Google Scholar 

  5. Aoki K, Kumagai Y, Sakurai A, Komatsu N, Fujita Y, Shionyu C, Matsuda M (2013) Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Mol Cell 52(4):529–540. doi:10.1016/j.molcel.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  6. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179–185

    Article  CAS  PubMed  Google Scholar 

  7. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4(8):556–564. doi:10.1038/ncb822

    CAS  PubMed  Google Scholar 

  8. Ryu H, Chung M, Dobrzynski M, Fey D, Blum Y, Lee SS, Peter M, Kholodenko BN, Jeon NL, Pertz O (2015) Frequency modulation of ERK activation dynamics rewires cell fate. Mol Syst Biol 11(11):838. doi:10.15252/msb.20156458

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ahmed S, Grant KG, Edwards LE, Rahman A, Cirit M, Goshe MB, Haugh JM (2014) Data-driven modeling reconciles kinetics of ERK phosphorylation, localization, and activity states. Mol Syst Biol 10:718. doi:10.1002/msb.134708

    Article  PubMed  PubMed Central  Google Scholar 

  10. Albeck JG, Mills GB, Brugge JS (2013) Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol Cell 49(2):249–261. doi:10.1016/j.molcel.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  11. Sparta B, Pargett M, Minguet M, Distor K, Bell G, Albeck JG (2015) Receptor level mechanisms are required for epidermal growth factor (EGF)-stimulated extracellular signal-regulated kinase (ERK) activity pulses. J Biol Chem 290(41):24784–24792. doi:10.1074/jbc.M115.662247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujita Y, Komatsu N, Matsuda M, Aoki K (2014) Fluorescence resonance energy transfer based quantitative analysis of feedforward and feedback loops in epidermal growth factor receptor signaling and the sensitivity to molecular targeting drugs. FEBS J 281(14):3177–3192. doi:10.1111/febs.12852

    Article  CAS  PubMed  Google Scholar 

  13. Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW (2014) High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157(7):1724–1734. doi:10.1016/j.cell.2014.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horgan AM, Stork PJ (2003) Examining the mechanism of Erk nuclear translocation using green fluorescent protein. Exp Cell Res 285(2):208–220

    Article  CAS  PubMed  Google Scholar 

  15. Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105(49):19264–19269. doi:10.1073/pnas.0804598105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sato M, Kawai Y, Umezawa Y (2007) Genetically encoded fluorescent indicators to visualize protein phosphorylation by extracellular signal-regulated kinase in single living cells. Anal Chem 79(6):2570–2575. doi:10.1021/ac062171d

    Article  CAS  PubMed  Google Scholar 

  17. Fritz RD, Letzelter M, Reimann A, Martin K, Fusco L, Ritsma L, Ponsioen B, Fluri E, Schulte-Merker S, van Rheenen J, Pertz O (2013) A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Sci Signal 6(285):rs12. doi:10.1126/scisignal.2004135

    Article  PubMed  Google Scholar 

  18. Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22(23):4647–4656. doi:10.1091/mbc.E11-01-0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okazaki K, Sagata N (1995) The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J 14(20):5048–5059

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498. doi:10.1016/j.cell.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  21. Eliceiri KW, Berthold MR, Goldberg IG, Ibanez L, Manjunath BS, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B, Stuurman N, Swedlow JR, Tomancak P, Carpenter AE (2012) Biological imaging software tools. Nat Methods 9(7):697–710. doi:10.1038/nmeth.2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 108(4):1531–1536. doi:10.1073/pnas.1008322108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Komatsubara AT, Matsuda M, Aoki K (2015) Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer. Sci Rep 5:13283. doi:10.1038/srep13283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Didem Sarikaya for helpful feedback on the manuscript. The methods described here were developed in part through support from the American Cancer Society (IRG-95-125-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Albeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pargett, M., Gillies, T.E., Teragawa, C.K., Sparta, B., Albeck, J.G. (2017). Single-Cell Imaging of ERK Signaling Using Fluorescent Biosensors. In: Tan, AC., Huang, P. (eds) Kinase Signaling Networks. Methods in Molecular Biology, vol 1636. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7154-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7154-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7152-7

  • Online ISBN: 978-1-4939-7154-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics