Skip to main content

Characterization of New Detergents and Detergent Mimetics by Scattering Techniques for Membrane Protein Crystallization

  • Protocol
  • First Online:
Membrane Protein Structure and Function Characterization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1635))

Abstract

Membrane proteins are difficult to manipulate and stabilize once they have been removed from their native membranes. However, despite these difficulties, successes in membrane-protein structure determination have continued to accumulate for over two decades, thanks to advances in chemistry and technology. Many of these advances have resulted from efforts focused on protein engineering, high-throughput expression, and development of detergent screens, all with the aim of enhancing protein stability for biochemistry and biophysical studies. In contrast, considerably less work has been done to decipher the basic mechanisms that underlie the structure of protein-detergent complexes and to describe the influence of detergent structure on stabilization and crystallization. These questions can be addressed using scattering techniques (employing light, X-rays, and/or neutrons), which are suitable to describe the structure and conformation of macromolecules in solution, as well as to assess weak interactions between particles, both of which are clearly germane to crystallization. These techniques can be used either in batch modes or coupled to size-exclusion chromatography, and offer the potential to describe the conformation of a detergent-solubilized membrane protein and to quantify and model detergent bound to the protein in order to optimize crystal packing. We will describe relevant techniques and present examples of scattering experiments, which allow one to explore interactions between micelles and between membrane protein complexes, and relate these interactions to membrane protein crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michel H (1983) Crystallization of membrane proteins. Trends Biochem Sci 8(2):56–59. doi:10.1016/0968-0004(83)90390-0

    Article  CAS  Google Scholar 

  2. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4(5):706–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wadsten P, Wohri AB, Snijder A, Katona G, Gardiner AT, Cogdell RJ, Neutze R, Engstrom S (2006) Lipidic sponge phase crystallization of membrane proteins. J Mol Biol 364(1):44–53

    Article  CAS  PubMed  Google Scholar 

  4. Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584(9):1721–1727. doi:10.1016/j.febslet.2009.10.024

    Article  CAS  PubMed  Google Scholar 

  5. Faham S, Boulting GL, Massey EA, Yohannan S, Yang D, Bowie JU (2005) Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci 14(3):836–840. doi:10.1110/ps.041167605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ducruix A, Guilloteau JP, Riès-Kautt M, Tardieu A (1996) Protein interactions as seen by solution X-ray scattering prior to crystallogenesis. J Cryst Growth 168:28–39

    Article  CAS  Google Scholar 

  7. Finet S, Vivares D, Bonneté F, Tardieu A (2003) Controlling biomolecular crystallization by understanding the distinct effects of PEGs and salts on solubility. In: Macromolecular crystallography, Pt C, vol 368. Methods in enzymology. pp. 105–129

    Google Scholar 

  8. George A, Wilson WW (1994) Predicting protein crystallization from a dilute solution property. Acta Crystallogr D50:361–365

    CAS  Google Scholar 

  9. Tardieu A, Le Verge A, Riès-Kautt M, Malfois M, Bonneté F, Finet S, Belloni L (1999) Proteins in solution : from X-ray scattering intensities to interaction potentials. J Cryst Growth 196:193–203

    Article  CAS  Google Scholar 

  10. Linke D (2009) Chapter 34 Detergents: an overview. In: Richard RB, Murray PD (eds) Methods in enzymology, vol 463. Academic Press, pp. 603–617. doi: 10.1016/S0076-6879(09)63034-2

  11. Lorber B, Fischer F, Bailly M, Roy H, Kern D (2012) Protein analysis by dynamic light scattering: Methods and techniques for students. Biochem Mol Biol Educ 40(6):372–382. doi:10.1002/bmb.20644

    Article  CAS  PubMed  Google Scholar 

  12. Arnold T, Linke D (2008) The use of detergents to purify membrane proteins. Curr Protoc Protein Sci / editorial board, John E Coligan [et al] Chapter 4:Unit 4 8 1–4 8 30. doi:10.1002/0471140864.ps0408s53

  13. Tate CG (2010) Practical considerations of membrane protein instability during purification and crystallisation. Methods Mol Biol 601:187–203

    Article  CAS  PubMed  Google Scholar 

  14. Polidori A, Raynal S, Barret L-A, Dahani M, Barrot-Ivolot C, Jungas C, Frotscher E, Keller S, Ebel C, Breyton C, Bonneté F (2016) Sparingly fluorinated maltoside-based surfactants for membrane-protein stabilization. New J Chem. doi:10.1039/C5NJ03502C

  15. Abla M, Unger S, Keller S, Bonnete F, Ebel C, Pucci B, Breyton C, Durand G (2015) Micellar and biochemical properties of a propyl-ended fluorinated surfactant designed for membrane-protein study. J Colloid Interface Sci 445:127–136. doi:10.1016/j.jcis.2014.12.066

    Article  CAS  PubMed  Google Scholar 

  16. Lee SC, Bennett BC, Hong W-X, Fu Y, Baker KA, Marcoux J, Robinson CV, Ward AB, Halpert JR, Stevens RC, Stout CD, Yeager MJ, Zhang Q (2013) Steroid-based facial amphiphiles for stabilization and crystallization of membrane proteins. Proc Natl Acad Sci 110(13):E1203–E1211. doi:10.1073/pnas.1221442110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chae PS, Rana RR, Gotfryd K, Rasmussen SGF, Kruse AC, Cho KH, Capaldi S, Carlsson E, Kobilka B, Loland CJ, Gether U, Banerjee S, Byrne B, Lee JK, Gellman SH (2013) Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study. Chem Commun 49(23):2287–2289

    Article  CAS  Google Scholar 

  18. Sharma KS, Durand G, Gabel F, Bazzacco P, Le Bon C, Billon-Denis E, Catoire LJ, Popot J-L, Ebel C, Pucci B (2012) Non-ionic amphiphilic homopolymers: synthesis, solution properties, and biochemical validation. Langmuir 28(10):4625–4639

    Article  CAS  PubMed  Google Scholar 

  19. Hovers J, Potschies M, Polidori A, Pucci B, Raynal S, Bonneté F, Serrano-Vega M, Tate C, Picot D, Pierre Y, Popot J-L, Nehmé R, Bidet M, Mus-Veteau I, Bußkamp H, Jung K-H, Marx A, Timmins PA, Welte W (2011) A class of mild surfactants that keep integral membrane proteins water-soluble for functional studies and crystallization. Mol Membr Biol 28(3):171–181

    Article  PubMed  Google Scholar 

  20. Muschol M, Rosenberger F (1995) Interactions in under- and supersaturated lysozyme solutions. Static and dynamic light scattering results. J Chem Phys 103(24):10424–10432

    Article  CAS  Google Scholar 

  21. Chae PS, Cho KH, Wander MJ, Bae HE, Gellman SH, Laible PD (2014) Hydrophobic variants of ganglio-tripod amphiphiles for membrane protein manipulation. Biochim Biophys Acta 1838(1, Part B):278–286. http://dx.doi.org/10.1016/j.bbamem.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  22. Hong W-X, Baker KA, Ma X, Stevens RC, Yeager M, Zhang Q (2010) Design, synthesis, and properties of branch-chained maltoside detergents for stabilization and crystallization of integral membrane proteins: human connexin 26. Langmuir 26(11):8690–8696. doi:10.1021/la904893d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva SF, Loland C, Pierre Y, Drew D, Popot J, Picot D, Fox B, Guan L, Gether U, Byrne B, Kobilka B, Gellman S (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chae PS, Gotfryd K, Pacyna J, Miercke LJW, Rasmussen SGF, Robbins RA, Rana RR, Loland CJ, Kobilka B, Stroud R, Byrne B, Gether U, Gellman SH (2010) Tandem facial Amphiphiles for membrane protein stabilization. J Am Chem Soc 132(47):16750–16752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsamaloukas AD, Beck A, Heerklotz H (2009) Modeling the micellization behavior of mixed and pure n-alkyl-maltosides. Langmuir 25(8):4393–4401. doi:10.1021/la8033935

    Article  CAS  PubMed  Google Scholar 

  26. Timmins PA, Hauk J, Wacker T, Welte W (1991) The influence of heptane-1,2,3-triol on the size and shape of ldao micelles - implications for the crystallization of membrane-proteins. FEBS Lett 280(1):115–120

    Article  CAS  PubMed  Google Scholar 

  27. Hitscherich C, Kaplan J, Allaman M, Wiencek J, Loll PJ (2000) Static light scattering studies of OmpF porin: Implications for integral membrane protein crystallization. Protein Sci 9(8):1559–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pernot P, Theveneau P, Giraud T, Fernandes RN, Nurizzo D, Spruce D, Surr J, McSweeney S, Round A, Felisaz F, Foedinger L, Gobbo A, Huet J, Villard C, Cipriani F (2010) New beamline dedicated to solution scattering from biological macromolecules at the ESRF. J Phys Conf Ser 247(1):012009

    Article  Google Scholar 

  29. Round A, Felisaz F, Fodinger L, Gobbo A, Huet J, Villard C, Blanchet CE, Pernot P, McSweeney S, Roessle M, Svergun DI, Cipriani F (2015) BioSAXS Sample Changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments. Acta Crystallogr D Biol Crystallogr 71(Pt 1):67–75. doi:10.1107/s1399004714026959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Cryst 36:1277–1282

    Article  CAS  Google Scholar 

  31. Lindner P, Zemb T (2002) Neutron, X-rays and light. Scattering methods applied to soft condensed matter. Mater Today 5(11):38. doi:10.1016/S1369-7021(02)01143-4

    Google Scholar 

  32. Tardieu A (1994) Thermodynamics and structure–concentrated solutions–structured disorder in vision. In: Neutron and synchrotron radiation for condensed matter studies, vol III. Springer-Verlag: Les éditions de Physique, France, pp. 145–160

    Google Scholar 

  33. Boyer M, Roy MO, Jullien M (1996) Dynamic light scattering study of precrystallizing ribonuclease solutions. J Cryst Growth 167:212–220

    Article  CAS  Google Scholar 

  34. Bonneté F, Finet S, Tardieu A (1999) Second virial coefficient: variations with lysozyme crystallization conditions. J Cryst Growth 196:403–414

    Article  Google Scholar 

  35. Li S, Xing D, Li J (2004) Dynamic light scattering application to study protein interactions in electrolyte solutions. J Biol Phys 30(4):313–324. doi:10.1007/s10867-004-0997-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guinier A, Fournet G (1955) Small angle scattering of X-rays. Wiley, New York

    Google Scholar 

  37. Berne BJ, Pecora R (1976) Dynamic light scattering. John Wiley, New York

    Google Scholar 

  38. Glatter O, Kratky O (eds) (1982) Small angle X-ray scattering. Academic Press, Cambridge, MA

    Google Scholar 

  39. Koch MHJ, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36(2):147–227

    Article  CAS  PubMed  Google Scholar 

  40. Lipfert J, Doniach S (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Biophys Biomol Struct 36:307–327. doi:10.1146/annurev.biophys.36.040306.132655

    Article  CAS  PubMed  Google Scholar 

  41. Itakura M, Shimada K, Matsuyama S, Saito T, Kinugasa S (2006) A convenient method to determine the Rayleigh ratio with uniform polystyrene oligomers. J Appl Polym Sci 99(4):1953–1959. doi:10.1002/app.22695

    Article  CAS  Google Scholar 

  42. Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57(11):4814–4820. doi:10.1063/1.1678153

    Article  CAS  Google Scholar 

  43. Provencher SW (1982) CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27(3):229–242. doi:10.1016/0010-4655(82)90174-6

    Article  Google Scholar 

  44. Harding SE, Johnson P (1985) The concentration-dependence of macromolecular parameters. Biochem J 231(3):543–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yadav S, Scherer TM, Shire SJ, Kalonia DS (2011) Use of dynamic light scattering to determine second virial coefficient in a semidilute concentration regime. Anal Biochem 411(2):292–296. doi:10.1016/j.ab.2010.12.014

    Article  CAS  PubMed  Google Scholar 

  46. Wilson WW, Delucas LJ (2014) Applications of the second virial coefficient: protein crystallization and solubility. Acta Crystallogr Sect F Struct Biol Cryst Commun 70(Pt 5):543–554. doi:10.1107/s2053230x1400867x

    Article  CAS  Google Scholar 

  47. Loll PJ, Allaman M, Wiencek J (2001) Assessing the role of detergent-detergent interactions in membrane protein crystallization. J Cryst Growth 232(1-4):432–438

    Article  CAS  Google Scholar 

  48. Rosenbusch JP (1990) The critical role of detergents in the crystallization of membrane proteins. J Struct Biol 104(1–3):134–138. doi:10.1016/1047-8477(90)90068-N

    Article  CAS  PubMed  Google Scholar 

  49. Wiener MC, Snook CF (2001) The development of membrane protein crystallization screens based upon detergent solution properties. J Cryst Growth 232(1-4):426–431

    Article  CAS  Google Scholar 

  50. Zulauf M (1991) Detergent phenomena in membrane protein crystallization. In: Michel H (ed) Crystallization of membrane proteins. CRC Press, Boca Rato, pp 53–72

    Google Scholar 

  51. Koszelak-Rosenblum M, Krol A, Mozumdar N, Wunsch K, Ferin A, Cook E, Veatch CK, Nagel R, Luft JR, DeTitta GT, Malkowski MG (2009) Determination and application of empirically derived detergent phase boundaries to effectively crystallize membrane proteins. Protein Sci 18(9):1828–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barret L-A, Barrot-Ivolot C, Raynal S, Jungas C, Polidori A, Bonnete F (2013) Influence of hydrophobic micelle structure on crystallization of the photosynthetic RC-LH1-PufX complex from rhodobacter blasticus. J Phys Chem B 117(29):8770–8781. doi:10.1021/jp403483q

    Article  CAS  PubMed  Google Scholar 

  53. Gonzalez-Tello P, Camacho F, Blazquez G (1994) Density and viscosity of concentrated aqueous solutions of polyethylene glycol. J Chem Eng Data 39(3):611–614. doi:10.1021/je00015a050

    Article  CAS  Google Scholar 

  54. Lindner P, Zemb T (1991) Neutron, X-ray and light scattering: introduction to an investigative tool for colloidal and polymeric systems. North-Holland Delta Series, Amsterdam

    Google Scholar 

  55. Vachette P 1996 Small angle X-ray scattering by solutions of biological macromolecules. In: Proceedings of the International school of physics “Enrico Fermi”. pp. 269–292.

    Google Scholar 

  56. Vivares D, Belloni L, Tardieu A, Bonneté F (2002) Catching the PEG-induced attractive interaction between proteins. Eur Phys J E 9:15–25

    CAS  PubMed  Google Scholar 

  57. Eisenberg H (1976) Biological macromolecules and polyelectrolytes in solution. Clarendon Press, Oxford

    Google Scholar 

  58. Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interface Sci 70:171–210. doi:10.1016/S0001-8686(97)00312-6

    Article  CAS  Google Scholar 

  59. Orthaber D, Bergmann A, Glatter O (2000) SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J Appl Cryst 33:218–225

    Article  CAS  Google Scholar 

  60. Hitscherich C, Aseyev V, Wiencek J, Loll PJ (2001) Effects of PEG on detergent micelles: implications for the crystallization of integral membrane proteins. Acta Crystallogr D57:1020–1029

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Bonneté .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bonneté, F., Loll, P.J. (2017). Characterization of New Detergents and Detergent Mimetics by Scattering Techniques for Membrane Protein Crystallization. In: Lacapere, JJ. (eds) Membrane Protein Structure and Function Characterization. Methods in Molecular Biology, vol 1635. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7151-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7151-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7149-7

  • Online ISBN: 978-1-4939-7151-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics