Skip to main content

Cell-Free Expression for the Study of Hydrophobic Proteins: The Example of Yeast ATP-Synthase Subunits

  • Protocol
  • First Online:
Membrane Protein Structure and Function Characterization

Abstract

Small hydrophobic membrane proteins or proteins with hydrophobic domains are often difficult to produce in bacteria. The cell-free expression system was found to be a very good alternative for the expression of small hydrophobic subunits of the yeast ATP-synthase, such as subunits e, g, k, i, f and the membrane domain of subunit 4, proteins that are suspected to play a role in the stability of ATP-synthase dimers. All of these proteins could be produced in milligrams amounts using the cell-free “precipitate mode” and were successfully solubilized in the presence of lysolipid 1-myristoyl-2-hydroxy-sn-glycero-3-phospho-1′-rac-glycerol. Purified proteins were also found suitable for structural investigations. An example is given with the NMR backbone assignment of the isotopically labeled subunit g. Protocols are also described for raising specific polyclonal antibodies against overexpressed cell-free proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    Article  CAS  PubMed  Google Scholar 

  2. Kigawa T, Yokoyama S (1991) A continuous cell-free protein synthesis system for coupled transcription-translation. J Biochem 110:166–168

    Article  CAS  PubMed  Google Scholar 

  3. Rothblatt JA, Meyer DI (1986) Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell 44:619–628

    Article  CAS  PubMed  Google Scholar 

  4. Madin K, Sawasaki T, Ogasawara T, Endo Y (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci U S A 97:559–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harbers M (2014) Wheat germ systems for cell-free protein expression. FEBS Lett 588:2762–2773. doi:10.1016/j.febslet.2014.05.061

    Article  CAS  PubMed  Google Scholar 

  6. Stech M, Quast RB, Sachse R, Schulze C, Wüstenhagen DA, Kubick S (2014) A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells. PLoS One 9:e96635. doi:10.1371/journal.pone.0096635

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anastasina M, Terenin I, Butcher SJ, Kainov DE (2014) A technique to increase protein yield in a rabbit reticulocyte lysate translation system. BioTechniques 56:36–39. doi:10.2144/000114125

    Article  CAS  PubMed  Google Scholar 

  8. Brödel AK, Sonnabend A, Kubick S (2014) Cell-free protein expression based on extracts from CHO cells. Biotechnol Bioeng 111:25–36. doi:10.1002/bit.25013

    Article  PubMed  Google Scholar 

  9. Brödel AK, Wüstenhagen DA, Kubick S (2015) Cell-free protein synthesis systems derived from cultured mammalian cells. Methods Mol Biol 1261:129–140. doi:10.1007/978-1-4939-2230-7_7

    Article  PubMed  Google Scholar 

  10. Weber LA, Feman ER, Baglioni C (1975) A cell free system from HeLa cells active in initiation of protein synthesis. Biochemistry 14:5315–5321

    Article  CAS  PubMed  Google Scholar 

  11. Zemella A, Thoring L, Hoffmeister C, Kubick S (2015) Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems. Chembiochem 16:2420–2431. doi:10.1002/cbic.201500340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwarz D, Junge F, Durst F, Frölich N, Schneider B, Reckel S, Sobhanifar S, Dötsch V, Bernhard F (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2:2945–2957. doi:10.1038/nprot.2007.426

    Article  CAS  PubMed  Google Scholar 

  13. Ma Y, Münch D, Schneider T, Sahl H-G, Bouhss A, Ghoshdastider U, Wang J, Dötsch V, Wang X, Bernhard F (2011) Preparative scale cell-free production and quality optimization of MraY homologues in different expression modes. J Biol Chem 286:38844–38853. doi:10.1074/jbc.M111.301085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henrich E, Dötsch V, Bernhard F (2015) Screening for lipid requirements of membrane proteins by combining cell-free expression with nanodiscs. Methods Enzymol 556:351–369. doi:10.1016/bs.mie.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  15. Matthies D, Haberstock S, Joos F, Dötsch V, Vonck J, Bernhard F, Meier T (2011) Cell-free expression and assembly of ATP synthase. J Mol Biol 413:593–603. doi:10.1016/j.jmb.2011.08.055

    Article  CAS  PubMed  Google Scholar 

  16. Rak M, Gokova S, Tzagoloff A (2011) Modular assembly of yeast mitochondrial ATP synthase. EMBO J 30:920–930. doi:10.1038/emboj.2010.364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brèthes D, di Rago J-P, Velours J (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230. doi:10.1093/emboj/21.3.221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davies KM, Daum B, Gold VAM, Mühleip AW, Brandt T, Blum TB, Mills DJ, Kühlbrandt W (2014) Visualization of ATP synthase dimers in mitochondria by electron cryo-tomography. J Vis Exp 91:51228. doi:10.3791/51228

    Google Scholar 

  19. Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H (1998) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17:7170–7178. doi:10.1093/emboj/17.24.7170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soubannier V, Vaillier J, Paumard P, Coulary B, Schaeffer J, Velours J (2002) In the absence of the first membrane-spanning segment of subunit 4(b), the yeast ATP synthase is functional but does not dimerize or oligomerize. J Biol Chem 277:10739–10745. doi:10.1074/jbc.M111882200

    Article  CAS  PubMed  Google Scholar 

  21. Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  CAS  PubMed  Google Scholar 

  22. Dautant A, Velours J, Giraud M-F (2010) Crystal structure of the Mg·ADP-inhibited state of the yeast F1c10-ATP synthase. J Biol Chem 285:29502–29510. doi:10.1074/jbc.M110.124529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Giraud M-F, Paumard P, Sanchez C, Brèthes D, Velours J, Dautant A (2012) Rotor architecture in the yeast and bovine F1-c-ring complexes of F-ATP synthase. J Struct Biol 177:490–497. doi:10.1016/j.jsb.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  24. Allegretti M, Klusch N, Mills DJ, Vonck J, Kühlbrandt W, Davies KM (2015) Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521:237–240. doi:10.1038/nature14185

    Article  CAS  PubMed  Google Scholar 

  25. Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kühlbrandt W, Meier T (2016) Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol Cell 63:445–456. doi:10.1016/j.molcel.2016.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paumard P, Arselin G, Vaillier J, Chaignepain S, Bathany K, Schmitter JM, Brèthes D, Velours J (2002) Two ATP synthases can be linked through subunits i in the inner mitochondrial membrane of Saccharomyces cerevisiae. Biochemistry 41:10390–10396

    Article  CAS  PubMed  Google Scholar 

  27. Giraud M-F, Paumard P, Soubannier V, Vaillier J, Arselin G, Salin B, Schaeffer J, Brèthes D, di Rago J-P, Velours J (2002) Is there a relationship between the supramolecular organization of the mitochondrial ATP synthase and the formation of cristae? Biochim Biophys Acta 1555:174–180

    Article  CAS  PubMed  Google Scholar 

  28. Wagner K, Perschil I, Fichter CD, van der Laan M (2010) Stepwise assembly of dimeric F(1)F(o)-ATP synthase in mitochondria involves the small F(o)-subunits k and i. Mol Biol Cell 21:1494–1504. doi:10.1091/mbc.E09-12-1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

  30. Egner R, Mahé Y, Pandjaitan R, Kuchler K (1995) Endocytosis and vacuolar degradation of the plasma membrane-localized Pdr5 ATP-binding cassette multidrug transporter in Saccharomyces cerevisiae. Mol Cell Biol 15:5879–5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guérin B, Labbe P, Somlo M (1979) Preparation of yeast mitochondria (Saccharomyces cerevisiae) with good P/O and respiratory control ratios. Methods Enzymol 55:149–159

    Article  PubMed  Google Scholar 

  32. Palmer AG, Fairbrother WJ, Cavanagh J, Wright PE, Rance M (1992) Improved resolution in three-dimensional constant-time triple resonance NMR spectroscopy of proteins. J Biomol NMR 2:103–108

    Article  CAS  PubMed  Google Scholar 

  33. Grzesiek S, Bax A (1992) Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson (1969) 96:432–440. doi:10.1016/0022-2364(92)90099-S

    Article  CAS  Google Scholar 

  34. Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and Beta-carbon resonances in proteins. J Magn Reson 101:201–205. doi:10.1006/jmrb.1993.1033

    Article  CAS  Google Scholar 

  35. Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance three-dimensional NMR experiments with Improved sensitivity. J Magn Reson B 103:203–216. doi:10.1006/jmrb.1994.1032

    Article  CAS  Google Scholar 

  36. Grzesiek S, Ikura M, Marius Clore G, Gronenborn AM, Bax A (1992) A 3D triple-resonance NMR technique for qualitative measurement of carbonyl-Hβ J couplings in isotopically enriched proteins. J Magn Reson (1969) 96:215–221. doi:10.1016/0022-2364(92)90307-S

    Article  CAS  Google Scholar 

  37. Clubb RT, Thanabal V, Wagner G (1992) A constant-time three-dimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C′ chemical shifts in 15N-13C-labelled proteins. J Magn Reson (1969) 97:213–217. doi:10.1016/0022-2364(92)90252-3

    Article  CAS  Google Scholar 

  38. Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    CAS  PubMed  Google Scholar 

  39. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  40. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. doi:10.1002/prot.20449

    Article  CAS  PubMed  Google Scholar 

  41. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  CAS  PubMed  Google Scholar 

  42. Rogé J, Betton J-M (2005) Use of pIVEX plasmids for protein overproduction in Escherichia coli. Microb Cell Factories 4:18. doi:10.1186/1475-2859-4-18

    Article  Google Scholar 

  43. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  44. Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci 15:2795–2804. doi:10.1110/ps.062465306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  46. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  47. Ansorge W (1985) Fast and sensitive detection of protein and DNA bands by treatment with potassium permanganate. J Biochem Biophys Methods 11:13–20

    Article  CAS  PubMed  Google Scholar 

  48. Arselin G, Giraud M-F, Dautant A, Vaillier J, Brèthes D, Coulary-Salin B, Schaeffer J, Velours J (2003) The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. Eur J Biochem 270:1875–1884

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Franck Bernhard (Institute of Biophysical Chemistry, Goethe-Universität Frankfurt am Main) for helpful advises concerning the CF-expression system. This work was supported by the F1Fo-Struct ANR grant (ANR-12-BSV8-024). We thank D. Brèthes for a careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-France Giraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Larrieu, I. et al. (2017). Cell-Free Expression for the Study of Hydrophobic Proteins: The Example of Yeast ATP-Synthase Subunits. In: Lacapere, JJ. (eds) Membrane Protein Structure and Function Characterization. Methods in Molecular Biology, vol 1635. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7151-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7151-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7149-7

  • Online ISBN: 978-1-4939-7151-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics