Skip to main content

Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi

  • Protocol
  • First Online:
RNAi and Small Regulatory RNAs in Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1622))

Abstract

Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pressman A, Blanco C, Chen IA (2015) The RNA World as a model system to study the origin of life. Curr Biol 25(19):R953–R963. doi:10.1016/j.cub.2015.06.016

    Article  CAS  PubMed  Google Scholar 

  2. Higgs PG, Lehman N (2015) The RNA World: molecular cooperation at the origins of life. Nat Rev Genet 16(1):7–17. doi:10.1038/nrg3841

    Article  CAS  PubMed  Google Scholar 

  3. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15(6):423–437. doi:10.1038/nrg3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. doi:10.1038/nrm2632

    Article  CAS  PubMed  Google Scholar 

  5. Chu CY, Rana TM (2007) Small RNAs: regulators and guardians of the genome. J Cell Physiol 213(2):412–419. doi:10.1002/jcp.21230

    Article  CAS  PubMed  Google Scholar 

  6. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114. doi:10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  7. Erdmann VA, Barciszewska MZ, Hochberg A, de Groot N, Barciszewski J (2001) Regulatory RNAs. Cell Mol Life Sci 58(7):960–977. doi:10.1007/PL00000913

    Article  CAS  PubMed  Google Scholar 

  8. Chen F, Evans A, Gaskell E, Pham J, Tsai MC (2011) Regulatory RNA: the new age. Mol Cell 43(6):851–852. doi:10.1016/j.molcel.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  9. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108. doi:10.1038/nrg2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang K, Elledge SJ, Hannon GJ (2006) Lessons from nature: microRNA-based shRNA libraries. Nat Methods 3(9):707–714. doi:10.1038/Nmeth923

    Article  CAS  PubMed  Google Scholar 

  11. Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239. doi:10.1146/annurev-biophys-083012-130404

    Article  CAS  PubMed  Google Scholar 

  12. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. doi:10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carroll D (2012) A CRISPR approach to gene targeting. Mol Ther 20(9):1658–1660. doi:10.1038/mt.2012.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334. doi:10.1038/nrg3686

    Article  CAS  PubMed  Google Scholar 

  15. Taleei R, Nikjoo H (2013) Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Mutat Res 756(1–2):206–212. doi:10.1016/j.mrgentox.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  16. Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11(1):118–133. doi:10.1038/nprot.2015.140

    Article  CAS  PubMed  Google Scholar 

  17. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355. doi:10.1038/nbt.2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379. doi:10.1016/j.cell.2013.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y, Wu L, Li Y, Ma X, Liu M, Li D (2014) CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc 9(10):2493–2512. doi:10.1038/nprot.2014.171

    Article  CAS  PubMed  Google Scholar 

  20. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551–553. doi:10.1038/nbt.2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ledford H (2015) CRISPR, the disruptor. Nature 522(7554):20–24. doi:10.1038/522020a

    Article  CAS  PubMed  Google Scholar 

  22. Baker M (2014) Gene editing at CRISPR speed. Nat Biotechnol 32(4):309–312. doi:10.1038/nbt.2863

    Article  PubMed  Google Scholar 

  23. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343. doi:10.1093/nar/gkt135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52. doi:10.1016/j.biotechadv.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  25. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034. doi:10.1038/nmeth.2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4(1):220–228. doi:10.1016/j.celrep.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M (2015) Knockout crickets for the study of learning and memory: dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep 5:15885. doi:10.1038/srep15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23(4):465–472. doi:10.1038/cr.2013.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141(3):707–714. doi:10.1242/dev.099853

    Article  CAS  PubMed  Google Scholar 

  30. Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakuma T, Sakamoto T, Yamamoto T (2016) All-in-one CRISPR-Cas9/FokI-dCas9 vector-mediated multiplex genome engineering in cultured cell. Methods Mol Biol. doi:10.1007/978-1-4939-6472-7_4

    PubMed  Google Scholar 

  33. Pyzocha NK, Ran FA, Hsu PD, Zhang F (2014) RNA-guided genome editing of mammalian cells. Methods Mol Biol 1114:269–277. doi:10.1007/978-1-62703-761-7_17

    Article  CAS  PubMed  Google Scholar 

  34. Yang L, Yang JL, Byrne S, Pan J, Church GM (2014) CRISPR/Cas9-directed genome editing of cultured cells. Curr Protoc Mol Biol 107:31.1.1–17. doi:10.1002/0471142727.mb3101s107

    PubMed  Google Scholar 

  35. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56. doi:10.1038/nature09941

    Article  CAS  PubMed  Google Scholar 

  36. Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480(7375):57–62. doi:10.1038/nature10637

    Article  CAS  PubMed  Google Scholar 

  37. Nasu M, Takata N, Danjo T, Sakaguchi H, Kadoshima T, Futaki S, Sekiguchi K, Eiraku M, Sasai Y (2012) Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS One 7(12):e53024. doi:10.1371/journal.pone.0053024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785. doi:10.1016/j.stem.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  39. Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, Oiso Y, Tsuji T, Sasai Y (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 7:10351. doi:10.1038/ncomms10351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arkell RM, Tam PP (2012) Initiating head development in mouse embryos: integrating signalling and transcriptional activity. Open Biol 2(3):120030. doi:10.1098/rsob.120030

    Article  PubMed  PubMed Central  Google Scholar 

  41. Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. doi:10.1016/j.cell.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  42. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658. doi:10.1016/j.stem.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  43. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, Korving J, van de Wetering M, Schwank G, Logtenberg M, Cuppen E, Snippert HJ, Medema JP, Kops GJ, Clevers H (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521(7550):43–47. doi:10.1038/nature14415

    Article  CAS  PubMed  Google Scholar 

  44. Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, de Punder K, Angers S, Peters PJ, Maurice MM, Clevers H (2016) Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530(7590):340–343. doi:10.1038/nature16937

    Article  CAS  PubMed  Google Scholar 

  45. Aubert J, Stavridis MP, Tweedie S, O'Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason JO, Roy D, Smith A (2003) Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci U S A 100(Suppl 1):11836–11841. doi:10.1073/pnas.1734197100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wataya T, Ando S, Muguruma K, Ikeda H, Watanabe K, Eiraku M, Kawada M, Takahashi J, Hashimoto N, Sasai Y (2008) Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc Natl Acad Sci U S A 105(33):11796–11801. doi:10.1073/pnas.0803078105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eiraku M, Sasai Y (2012) Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 7(1):69–79. doi:10.1038/nprot.2011.429

    Article  CAS  Google Scholar 

  48. Takata N, Sakakura E, Kasukawa T, Sakuma T, Yamamoto T, Sasai Y (2016) Establishment of functional genomics pipeline in mouse epiblast-like tissue by combining transcriptomic analysis and gene knockdown/knockin/knockout, using RNA interference and CRISPR/Cas9. Hum Gene Ther 27(6):436–450. doi:10.1089/hum.2015.148

    Article  CAS  PubMed  Google Scholar 

  49. Ikeya M, Kawada M, Nakazawa Y, Sakuragi M, Sasai N, Ueno M, Kiyonari H, Nakao K, Sasai Y (2005) Gene disruption/knock-in analysis of mONT3: vector construction by employing both in vivo and in vitro recombinations. Int J Dev Biol 49(7):807–823. doi:10.1387/ijdb.051975mi

    Article  CAS  PubMed  Google Scholar 

  50. Love NR, Thuret R, Chen YY, Ishibashi S, Sabherwal N, Paredes R, Alves-Silva J, Dorey K, Noble AM, Guille MJ, Sasai Y, Papalopulu N, Amaya E (2011) pTransgenesis: a cross-species, modular transgenesis resource. Development 138(24):5451–5458. doi:10.1242/dev.066498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Acampora D, Di Giovannantonio LG, Simeone A (2013) Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development 140(1):43–55. doi:10.1242/dev.085290

    Article  CAS  PubMed  Google Scholar 

  52. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391. doi:10.1016/S0092-8674(00)81769-9

    Article  CAS  PubMed  Google Scholar 

  53. Niwa H (2007) How is pluripotency determined and maintained? Development 134(4):635–646. doi:10.1242/dev.02787

    Article  CAS  PubMed  Google Scholar 

  54. Betschinger J, Nichols J, Dietmann S, Corrin PD, Paddison PJ, Smith A (2013) Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 153(2):335–347. doi:10.1016/j.cell.2013.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wood HB, Episkopou V (1999) Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 86(1–2):197–201. doi:10.1016/S0925-4773(99)00116-1

    Article  CAS  PubMed  Google Scholar 

  56. Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125(10):1967–1978

    CAS  PubMed  Google Scholar 

  57. Hatta K, Takeichi M (1986) Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320(6061):447–449. doi:10.1038/320447a0

    Article  CAS  PubMed  Google Scholar 

  58. Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181(1):64–78. doi:10.1006/dbio.1996.8443

    Article  CAS  PubMed  Google Scholar 

  59. Furukawa T, Kozak CA, Cepko CL (1997) rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci U S A 94(7):3088–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takata N, Sakakura E, Sasai Y (2016) IGF-2/IGF-1R signaling has distinct effects on Sox1, Irx3, and Six3 expressions during ES cell derived-neuroectoderm development in vitro. In Vitro Cell Dev Biol Anim 52(5):607–615. doi:10.1007/s11626-016-0012-6

    Article  CAS  PubMed  Google Scholar 

  61. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  62. Hansen K, Coussens MJ, Sago J, Subramanian S, Gjoka M, Briner D (2012) Genome editing with CompoZr custom zinc finger nucleases (ZFNs). Jove-J Vis Exp 64:e3304. doi:10.3791/3304

    Google Scholar 

  63. Saenger W, Orth P, Kisker C, Hillen W, Hinrichs W (2000) The tetracycline repressor—a paradigm for a biological switch. Angew Chem Int Ed Engl 39(12):2042–2052. doi:10.1002/1521-3773(20000616)39:12<2042::AID-ANIE2042>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  64. Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69(2):326–356. doi:10.1128/MMBR.69.2.326-356.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, Sell BR, Allen JR, Day RN, Israelsson M, Davidson MW, Wang J (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10(5):407–409. doi:10.1038/nmeth.2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TW Jr, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751. doi:10.1038/ncomms1738

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227(3):707–711. doi:10.1006/bbrc.1996.1573

    Article  CAS  PubMed  Google Scholar 

  68. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90. doi:10.1038/nbt0102-87

    Article  CAS  PubMed  Google Scholar 

  69. Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9(10):1005–1012. doi:10.1038/nmeth.2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4(7):555–557. doi:10.1038/nmeth1062

    Article  CAS  PubMed  Google Scholar 

  71. Abe T, Kiyonari H, Shioi G, Inoue KI, Nakao K, Aizawa S, Fujimori T (2011) Establishment of conditional reporter mouse lines at ROSA26 locus for live cell imaging. Genesis 49(7):579–590. doi:10.1002/dvg.20753

    Article  CAS  PubMed  Google Scholar 

  72. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909. doi:10.1038/nmeth819

    Article  CAS  PubMed  Google Scholar 

  73. Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273(52):34970–34975. doi:10.1074/jbc.273.52.34970

    Article  CAS  PubMed  Google Scholar 

  74. Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39(3 Pt 2):499–509. doi:10.1016/0092-8674(84)90457-4

    Article  CAS  PubMed  Google Scholar 

  75. Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7(6):2087–2096. doi:10.1128/MCB.7.6.2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ghosh K, Van Duyne GD (2002) Cre-loxP biochemistry. Methods 28(3):374–383. doi:10.1016/S1046-2023(02)00244-X

    Article  CAS  PubMed  Google Scholar 

  77. Sakakura E, Eiraku M, Takata N (2016) Specification of embryonic stem cell-derived tissues into eye fields by Wnt signaling using rostral diencephalic tissue-inducing culture. Mech Dev 141:90–99. doi:10.1016/j.mod.2016.05.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the laboratory members of Organogenesis and Neurogenesis team, and In Vitro Histogenesis team for helpful discussions. We also thank A. Miyawaki for tdKeima cDNA and T. Nakamura and T. Takahito for important advice for the basics of genome editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozomu Takata Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Takata, N., Sakakura, E., Sakuma, T., Yamamoto, T. (2017). Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi. In: Zhang, B. (eds) RNAi and Small Regulatory RNAs in Stem Cells. Methods in Molecular Biology, vol 1622. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7108-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7108-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7106-0

  • Online ISBN: 978-1-4939-7108-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics