Skip to main content

Detection of Helicobacter pylori in the Gastric Mucosa by Fluorescence In Vivo Hybridization

  • Protocol
  • First Online:
Diagnostic Bacteriology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1616))

Abstract

In this chapter, we describe a fluorescence in vivo hybridization (FIVH) protocol, using nucleic acid probes, for the detection of the bacterium Helicobacter pylori in the gastric mucosa of an infected C57BL/6 mouse model. This protocol should be easily extended to other microorganisms not only as a way to identify in vivo important microorganisms and their patterns of distribution within specific or at different anatomic sites, but also to better understand interaction mechanisms involving the microbiome and the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243(4896):1360–1363

    Article  CAS  PubMed  Google Scholar 

  2. Guimaraes N, Azevedo NF, Figueiredo C, Keevil CW, Vieira MJ (2007) Development and application of a novel peptide nucleic acid probe for the specific detection of Helicobacter pylori in gastric biopsies. J Clin Microbiol 45(9):3089–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6(3):302–309

    Article  CAS  PubMed  Google Scholar 

  4. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6(5):339–348. doi:10.1038/nrmicro1888

    Article  CAS  PubMed  Google Scholar 

  5. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172(2):762–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Makristathis A, Riss S, Hirschl AM (2014) A novel fluorescence in situ hybridization test for rapid pathogen identification in positive blood cultures. Clin Microbiol Infect 20(10):O760–O763. doi:10.1111/1469-0691.12561

    Article  CAS  PubMed  Google Scholar 

  8. Harris DM, Hata DJ (2013) Rapid identification of bacteria and Candida using PNA-FISH from blood and peritoneal fluid cultures: a retrospective clinical study. Ann Clin Microbiol Antimicrob 12:2. doi:10.1186/1476-0711-12-2. 1476-0711-12-2 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  9. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. doi:10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  10. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(Database issue):D633–D642. doi:10.1093/nar/gkt1244. gkt1244 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H (2003) Alignment of BLAST high-scoring segment pairs based on the longest increasing subsequence algorithm. Bioinformatics 19(11):1391–1396

    Article  CAS  PubMed  Google Scholar 

  12. Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung CY, Chang W, Hirsch JD, Beechem JM, Haugland RP, Haugland RP (2003) Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51(12):1699–1712

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi-Takanaka Y, Stasevich TJ, Kurumizaka H, Nozaki N, Kimura H (2014) Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging. PLoS One 9(9):e106271. doi:10.1371/journal.pone.0106271

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hugenholtz P, Tyson GW, Blackall LL (2002) Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol Biol 179:29–42

    CAS  PubMed  Google Scholar 

  15. Cerqueira L, Azevedo NF, Almeida C, Jardim T, Keevil CW, Vieira MJ (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 9(10):1944–1960. doi:10.3390/ijms9101944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kubota K, Ohashi A, Imachi H, Harada H (2006) Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microbiol 72(8):5311–5317. doi:10.1128/aem.03039-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robertson KL, Vora GJ (2012) Locked nucleic acid and flow cytometry-fluorescence in situ hybridization for the detection of bacterial small noncoding RNAs. Appl Environ Microbiol 78(1):14–20. doi:10.1128/aem.06399-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fontenete S, Guimaraes N, Leite M, Figueiredo C, Wengel J, Filipe Azevedo N (2013) Hybridization-based detection of Helicobacter pylori at human body temperature using advanced locked nucleic acid (LNA) probes. PLoS One 8(11):e81230. doi:10.1371/journal.pone.0081230. PONE-D-13-15277 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fontenete S, Leite M, Guimaraes N, Madureira P, Ferreira RM, Figueiredo C, Wengel J, Azevedo NF (2015) Towards Fluorescence In Vivo Hybridization (FIVH) detection of H. pylori in gastric mucosa using advanced LNA probes. PLoS One 10(4):e0125494. doi:10.1371/journal.pone.0125494. PONE-D-14-54901 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fontenete SLM, Cappoen D, Santos R, Ginneken CV, Figueiredo C, Wengel J, Cos P, Azevedo NF (2016) Fluorescence in vivo hybridization (FIVH) for detection of Helicobacter pylori infection in a C57BL/6 mouse model. PLoS One 11(2):e0148353

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marshall BJ (1988) The Campylobacter pylori story. Scand J Gastroenterol Suppl 146:58–66

    Article  CAS  PubMed  Google Scholar 

  22. Lee A (1994) The microbiology and epidemiology of Helicobacter pylori infection. Scand J Gastroenterol Suppl 201:2–6

    Article  CAS  PubMed  Google Scholar 

  23. Fontenete S, Leite M, Cappoen D, Santos R, Ginneken CV, Figueiredo C, Wengel J, Cos P, Azevedo NF (2016) Fluorescence In Vivo Hybridization (FIVH) for detection of Helicobacter pylori infection in a C57BL/6 mouse model. PLoS One 11(2):e0148353. doi:10.1371/journal.pone.0148353. PONE-D-15-52300 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kumar R, Singh SK, Koshkin AA, Rajwanshi VK, Meldgaard M, Wengel J (1998) The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 8(16):2219–2222. doi:S0960894X98003667 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. You Y, Moreira BG, Behlke MA, Owczarzy R (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res 34(8):e60. doi:10.1093/nar/gkl175. 34/8/e60 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kierzek E, Ciesielska A, Pasternak K, Mathews DH, Turner DH, Kierzek R (2005) The influence of locked nucleic acid residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes. Nucleic Acids Res 33(16):5082–5093. doi:10.1093/nar/gki789. 33/16/5082 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan Y, Yan J, Piao X, Zhang T, Guan Y (2012) Effect of LNA- and OMeN-modified oligonucleotide probes on the stability and discrimination of mismatched base pairs of duplexes. J Biosci 37(2):233–241

    Article  CAS  PubMed  Google Scholar 

  28. Maciaszek A, Krakowiak A, Janicka M, Tomaszewska-Antczak A, Sobczak M, Mikolajczyk B, Guga P (2015) LNA units present in the (2′-OMe)-RNA strand stabilize parallel duplexes (2′-OMe)-RNA/[All-RP-PS]-DNA and parallel triplexes (2′-OMe)-RNA/[All-RP-PS]-DNA/RNA. An improved tool for the inhibition of reverse transcription. Org Biomol Chem 13(8):2375–2384. doi:10.1039/c4ob02364a

    Article  CAS  PubMed  Google Scholar 

  29. Fontenete S, Guimaraes N, Wengel J, Azevedo NF (2015) Prediction of melting temperatures in fluorescence in situ hybridization (FISH) procedures using thermodynamic models. Crit Rev Biotechnol 36(3):566–577. doi:10.3109/07388551.2014.993589

    PubMed  Google Scholar 

  30. Adams AM, Harding PL, Iversen PL, Coleman C, Fletcher S, Wilton SD (2007) Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries. BMC Mol Biol 8:57. doi:10.1186/1471-2199-8-57

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Project UID/EQU/00511/2013-LEPABE, by the FCT/MEC with national funds and when applicable cofunded by FEDER in the scope of the P2020 Partnership Agreement; by FEDER funds through Programa Operacional Factores de Competitividade—COMPETE, by the Programa Operacional do Norte (ON2) program, Project NORTE-07-0124-FEDER-000022 to M.L., and by national funds through FCT (Fundação para a Ciência e a Tecnologia): DNA mimics Research Project PIC/IC/82815/2007, Ph.D. grant, SFRH/BD/72999/2010 to S.F., and Post-Doctoral fellowship SFRH/BPD/33420/2008 to M.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno F. Azevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fontenete, S., Leite, M., Figueiredo, C., Cos, P., Azevedo, N.F. (2017). Detection of Helicobacter pylori in the Gastric Mucosa by Fluorescence In Vivo Hybridization. In: Bishop-Lilly, K. (eds) Diagnostic Bacteriology. Methods in Molecular Biology, vol 1616. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7037-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7037-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7035-3

  • Online ISBN: 978-1-4939-7037-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics