Skip to main content

Crystallization of Membrane Proteins: An Overview

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Membrane proteins are crucial components of cellular membranes and are responsible for a variety of physiological functions. The advent of new tools and technologies for structural biology of membrane proteins has led to a significant increase in the number of structures deposited to the Protein Data Bank during the past decade. This new knowledge has expanded our fundamental understanding of their mechanism of function and contributed to the drug-design efforts. In this chapter we discuss current approaches for membrane protein expression, solubilization, crystallization, and data collection. Additionally, we describe the protein quality-control assays that are often instrumental as a guideline for a shorter path toward the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yildirim MA, Goh K-I, Cusick ME et al (2007) Drug-target network. Nat Biotechnol 25:1119–1126

    Article  CAS  PubMed  Google Scholar 

  2. Ujwal R, Bowie JU (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gourdon P, Andersen JL, Hein KL et al (2011) HiLiDe—systematic approach to membrane protein crystallization in lipid and detergent. Cryst Growth Des 11:2098–2106

    Article  CAS  Google Scholar 

  5. Newby ZER, O’Connell JD, Gruswitz F et al (2009) A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat Protoc 4:619–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu W, Cherezov V (2011) Crystallization of membrane proteins in lipidic mesophases. J Vis Exp:e2501

    Google Scholar 

  7. Caffrey M, Porter C (2010) Crystallizing membrane proteins for structure determination using lipidic mesophases. J Vis Exp:e1712

    Google Scholar 

  8. Li D, Boland C, Aragao D et al (2012) Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. J Vis Exp:e4001

    Google Scholar 

  9. Ujwal R, Abramson J (2012) High-throughput crystallization of membrane proteins using the lipidic bicelle method. J Vis Exp:e3383

    Google Scholar 

  10. Li D, Boland C, Walsh K et al (2012) Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. J Vis Exp:e4000

    Google Scholar 

  11. Luecke H, Schobert B, Richter HT et al (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 291:899–911

    Article  CAS  PubMed  Google Scholar 

  12. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  13. Deisenhofer J, Epp O, Miki K et al (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624

    Article  CAS  PubMed  Google Scholar 

  14. Ghosh E, Kumari P, Jaiman D et al (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81

    Article  CAS  PubMed  Google Scholar 

  15. Alexandrov AI, Mileni M, Chien EYT et al (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16:351–359

    Article  CAS  PubMed  Google Scholar 

  16. Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30:1102–1107

    Article  CAS  PubMed  Google Scholar 

  17. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  18. Studier FW (2014) Stable expression clones and auto-induction for protein production in E. coli. Methods Mol Biol 1091:17–32

    Article  CAS  PubMed  Google Scholar 

  19. Newton-Vinson P, Hubalek F, Edmondson DE (2000) High-level expression of human liver monoamine oxidase B in Pichia pastoris. Protein Expr Purif 20:334–345

    Article  CAS  PubMed  Google Scholar 

  20. Jin MSM, Oldham MML, Zhang Q et al (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490:566–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tao X, Avalos JL, Chen J et al (2009) Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science 326:1668–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brohawn SG, del Mármol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G Ppoteins, PIP2, and sodium. Cell 147:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shimamura T, Shiroishi M, Weyand S et al (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He Y, Wang K, Yan N (2014) The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell 5:658–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F et al (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30:1–18

    Article  PubMed  CAS  Google Scholar 

  27. Harrison RL, Jarvis DL (2006) Protein N-glycosylation in the baculovirus–insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv Virus Res 68:159–191

    Article  CAS  PubMed  Google Scholar 

  28. Lopez M, Tetaert D, Juliant S et al (1999) O-Glycosylation potential of lepidopteran insect cell lines. Biochim Biophys Acta 1427:49–61

    Article  CAS  PubMed  Google Scholar 

  29. Ciccarone VC, Polayes DA, Luckow VA (1998) Generation of recombinant baculovirus DNA in E. coli using a baculovirus shuttle vector. Methods Mol Med 13:213–235

    CAS  PubMed  Google Scholar 

  30. Hanson MA, Brooun A, Baker KA et al (2007) Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. Protein Expr Purif 56:85–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andréll J, Tate CG (2013) Overexpression of membrane proteins in mammalian cells for structural studies. Mol Membr Biol 30:52–63

    Article  PubMed  Google Scholar 

  32. Tate CG (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett 504:94–98

    Article  CAS  PubMed  Google Scholar 

  33. Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    Article  PubMed  CAS  Google Scholar 

  34. Annalora AJ, Goodin DB, Hong W-X et al (2010) Crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism. J Mol Biol 396:441–451

    Article  CAS  PubMed  Google Scholar 

  35. Newstead S, Iwata SO (2008) Rationalizing a-helical membrane protein crystallization. Protein Sci 17:466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chae PS, Kruse AC, Gotfryd K et al (2013) Novel tripod amphiphiles for membrane protein analysis. Chemistry 19:15645–15651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Q, Ma X, Ward A et al (2007) Designing facial amphiphiles for the stabilization of integral membrane proteins. Angew Chem Int Ed 46:7023–7025

    Article  CAS  Google Scholar 

  38. Ehsan M, Du Y, Scull NJ et al (2016) Highly branched pentasaccharide-bearing amphiphiles for membrane protein studies. J Am Chem Soc 138:3789–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chae PS, Rasmussen SGF, Rana RR et al (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosenbaum DM, Zhang C, Lyons JA et al (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 469:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haga K, Kruse AC, Asada H et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang H, Goehring A, Wang KH et al (2013) Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature 503:141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McGregor C-L, Chen L, Pomroy NC et al (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 21:171–176

    Article  CAS  PubMed  Google Scholar 

  44. Sadaf A, Cho KH, Byrne B, Chae PS (2015) Amphipathic agents for membrane protein study. Methods Enzymol 557:57–94

    Article  CAS  PubMed  Google Scholar 

  45. Zhao X, Nagai Y, Reeves PJ et al (2006) Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci U S A 103:17707–17712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci U S A 93:15047–15050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  CAS  PubMed  Google Scholar 

  48. Polovinkin V, Gushchin I, Sintsov M et al (2014) High-resolution structure of a membrane protein transferred from amphipol to a lipidic mesophase. J Membr Biol 247:997–1004

    Article  CAS  PubMed  Google Scholar 

  49. Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett 584:1721–1727

    Article  CAS  PubMed  Google Scholar 

  50. Hagn F, Etzkorn M, Raschle T et al (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856

    Article  CAS  Google Scholar 

  52. Ritchie TK, Grinkova YV, Bayburt TH et al (2009) Chapter 11—Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Glück JM, Wittlich M, Feuerstein S et al (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131:12060–12061

    Article  PubMed  CAS  Google Scholar 

  54. Kang HJ, Lee C, Drew D (2013) Breaking the barriers in membrane protein crystallography. Int J Biochem Cell Biol 45:636–644

    Article  CAS  PubMed  Google Scholar 

  55. Dupeux F, Röwer M, Seroul G et al (2011) A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Crystallogr D Biol Crystallogr 67:915–919

    Article  CAS  PubMed  Google Scholar 

  56. Hunte C, Koepke J, Lange C et al (2000) Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 8:669–684

    Article  CAS  PubMed  Google Scholar 

  57. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou Y, Morais-Cabral JH, Kaufman A et al (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414:43–48

    Article  CAS  PubMed  Google Scholar 

  59. Fang Y, Jayaram H, Shane T et al (2009) Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature 460:1040–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  60. De Genst E, Silence K, Decanniere K et al (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103:4586–4591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Rasmussen SGF, Choi H-J, Fung JJ et al (2011) Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ring AM, Manglik A, Kruse AC et al (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Geertsma ER, Chang Y-N, Shaik FR et al (2015) Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22:803–808

    Article  CAS  PubMed  Google Scholar 

  64. Chun E, Thompson AA, Liu W et al (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rosenbaum DM, Cherezov V, Hanson MA et al (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  CAS  PubMed  Google Scholar 

  66. Serrano-Vega MJ, Magnani F, Shibata Y et al (2008) Conformational thermostabilization of the 1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A 105:877–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Warne T, Edwards PC, Leslie AGW et al (2012) Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20:841–849

    Article  CAS  PubMed  Google Scholar 

  68. Magnani F, Shibata Y, Serrano-Vega MJ et al (2008) Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc Natl Acad Sci U S A 105:10744–10749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Klenk C, Ehrenmann J, Schütz M et al (2016) A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution. Sci Rep 6:21294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sarkar CA, Dodevski I, Kenig M et al (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci U S A 105:14808–14813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Malawski GA, Hillig RC, Monteclaro F et al (2006) Identifying protein construct variants with increased crystallization propensity—a case study. Protein Sci 15:2718–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  CAS  PubMed  Google Scholar 

  73. Semisotnov GV, Rodionova NA, Razgulyaev OI et al (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128

    Article  CAS  PubMed  Google Scholar 

  74. Tomasiak TM, Pedersen BP, Chaudhary S et al (2014) General qPCR and plate reader methods for rapid optimization of membrane protein purification and crystallization using thermostability assays. Curr Protoc Protein Sci 77:29.11.1–29.11.14

    Article  Google Scholar 

  75. Mancusso R, Karpowich NK, Czyzewski BK et al (2011) Simple screening method for improving membrane protein thermostability. Methods 55:324–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20:1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Parker JL, Newstead S (2012) Current trends in α-helical membrane protein crystallization: an update. Protein Sci 21:1358–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Raman P, Cherezov V, Caffrey M (2006) The membrane protein data Bank. Cell Mol Life Sci 63:36–51

    Article  CAS  PubMed  Google Scholar 

  81. Wadsten P, Wöhri AB, Snijder A et al (2006) Lipidic sponge phase crystallization of membrane proteins. J Mol Biol 364:44–53

    Article  CAS  PubMed  Google Scholar 

  82. Cherezov V, Clogston J, Papiz MZ et al (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol 357:1605–1618

    Article  CAS  PubMed  Google Scholar 

  83. Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6

    Article  CAS  PubMed  Google Scholar 

  84. Rouhani S, Cartailler JP, Facciotti MT et al (2001) Crystal structure of the D85S mutant of bacteriorhodopsin: model of an O-like photocycle intermediate. J Mol Biol 313:615–628

    Article  CAS  PubMed  Google Scholar 

  85. Cherezov V, Fersi H, Caffrey M (2001) Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys J 81:225–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li L, Fu Q, Kors CA et al (2010) A plug-based microfluidic system for dispensing lipidic cubic phase (LCP) material validated by crystallizing membrane proteins in lipidic mesophases. Microfluid Nanofluidics 8:789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kang Y, Zhou XE, Gao X et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rasmussen SGF, DeVree BT, Zou Y et al (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Caffrey M (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu Rev Biophys 38:29–51

    Article  CAS  PubMed  Google Scholar 

  90. Caffrey M, Lyons J, Smyth T et al (2009) Monoacylglycerols: the workhorse lipids for crystallizing membrane proteins in mesophases. Curr Top Membr 63:83–108

    Article  CAS  Google Scholar 

  91. Li D, Lee J, Caffrey M (2011) Crystallizing membrane proteins in lipidic mesophases. A host lipid screen. Cryst Growth Des 11:530–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li D, Shah STA, Caffrey M (2013) Host lipid and temperature as important screening variables for crystallizing integral membrane proteins in lipidic mesophases. Trials with diacylglycerol kinase. Cryst Growth Des 13:2846–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cherezov V, Clogston J, Misquitta Y et al (2002) Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys J 83:3393–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cheng A, Hummel B, Qiu H et al (1998) A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids 95:11–21

    Article  CAS  PubMed  Google Scholar 

  95. Cherezov V, Caffrey M (2005) A simple and inexpensive nanoliter-volume dispenser for highly viscous materials used in membrane protein crystallization. J Appl Crystallogr 38:398–400

    Article  CAS  Google Scholar 

  96. Cherezov V, Caffrey M (2003) Nano-volume plates with excellent optical properties for fast, inexpensive crystallization screening of membrane proteins. J Appl Crystallogr 36:1372–1377

    Article  CAS  Google Scholar 

  97. Weierstall U, James D, Wang C et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Cherezov V, Peddi A, Muthusubramaniam L et al (2004) A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr D Biol Crystallogr 60:1795–1807

    Article  PubMed  CAS  Google Scholar 

  99. Li D, Caffrey M (2011) Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes. Proc Natl Acad Sci U S A 108:8639–8644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu W, Hanson MA, Stevens RC et al (2010) LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment. Biophys J 98:1539–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fenalti G, Abola EE, Wang C et al (2015) Fluorescence recovery after photobleaching in lipidic cubic phase (LCP-FRAP): a precrystallization assay for membrane proteins. Methods Enzymol 557:417–437

    Article  CAS  PubMed  Google Scholar 

  102. Whiles JA, Deems R, Vold RR et al (2002) Bicelles in structure-function studies of membrane-associated proteins. Bioorg Chem 30:431–442

    Article  CAS  PubMed  Google Scholar 

  103. Czerski L, Sanders CR (2000) Functionality of a membrane protein in bicelles. Anal Biochem 284:327–333

    Article  CAS  PubMed  Google Scholar 

  104. De Angelis AA, Howell SC, Nevzorov AA et al (2006) Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128:12256–12267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure 6:1227–1234

    Article  CAS  PubMed  Google Scholar 

  106. Katsaras J, Harroun TA, Pencer J et al (2005) “Bicellar” lipid mixtures as used in biochemical and biophysical studies. Naturwissenschaften 92:355–366

    Article  CAS  PubMed  Google Scholar 

  107. Faham S, Boulting GL, Massey EA et al (2005) Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci 14:836–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Luecke H, Schobert B, Stagno J et al (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 105:16561–16565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rasmussen SGF, Choi H-J, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  PubMed  Google Scholar 

  110. Vinothkumar KR (2011) Structure of rhomboid protease in a lipid environment. J Mol Biol 407:232–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang H, Elferich J, Gouaux E (2012) Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nat Struct Mol Biol 19:212–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Chen S, Oldham ML, Davidson AL et al (2013) Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 499:364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Payandeh J, Scheuer T, Zheng N et al (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tang L, Gamal El-Din TM, Payandeh J et al (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61

    Article  PubMed  CAS  Google Scholar 

  115. Ujwal R, Cascio D, Colletier J-P et al (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105:17742–17747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gruss F, Zähringer F, Jakob RP et al (2013) The structural basis of autotransporter translocation by TamA. Nat Struct Mol Biol 20:1318–1320

    Article  CAS  PubMed  Google Scholar 

  117. Liu S, Cheng W, Fowle Grider R et al (2014) Structures of an intramembrane vitamin K epoxide reductase homolog reveal control mechanisms for electron transfer. Nat Commun 5:3110

    PubMed  PubMed Central  Google Scholar 

  118. Lee C-H, Lü W, Michel JC et al (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511:191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Althoff T, Hibbs RE, Banerjee S et al (2014) X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512:333–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Malinauskaite L, Quick M, Reinhard L et al (2014) A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nat Struct Mol Biol 21:1006–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang K, Sitsel O, Meloni G et al (2014) Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514:518–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Andersson M, Mattle D, Sitsel O et al (2014) Copper-transporting P-type ATPases use a unique ion-release pathway. Nat Struct Mol Biol 21:43–48

    Article  CAS  PubMed  Google Scholar 

  123. Kintzer AF, Stroud RM (2016) Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:258–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li L, Park E, Ling J et al (2016) Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531:395–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Parkin S, Hope H (1998) Macromolecular cryocrystallography: cooling, mounting, storage and transportation of crystals. J Appl Crystallogr 31:945–953

    Article  CAS  Google Scholar 

  126. Garman EF, Schneider TR (1997) Macromolecular cryocrystallography. J Appl Crystallogr 30:211–237

    Article  Google Scholar 

  127. Pflugrath JW (2004) Macromolecular cryocrystallography—methods for cooling and mounting protein crystals at cryogenic temperatures. Methods 34:415–423

    Article  CAS  PubMed  Google Scholar 

  128. Joseph JS, Liu W, Kunken J et al (2011) Characterization of lipid matrices for membrane protein crystallization by high-throughput small angle X-ray scattering. Methods 55:342–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cherezov V, Hanson MA, Griffith MT et al (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 μm size X-ray synchrotron beam. J R Soc Interface 6:S587–S597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kissick DJ, Dettmar CM, Becker M et al (2013) Towards protein-crystal centering using second-harmonic generation (SHG) microscopy. Acta Crystallogr D Biol Crystallogr 69:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Axford D, Foadi J, Hu NJ et al (2015) Structure determination of an integral membrane protein at room temperature from crystals in situ. Acta Crystallogr D Biol Crystallogr 71:1228–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Axford D, Owen RL, Aishima J et al (2012) In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr 68:592–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huang C-Y, Olieric V, Ma P et al (2016) In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 72:93–112

    Article  CAS  Google Scholar 

  134. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Spence JCH, Weierstall U, Chapman HN (2012) X-ray lasers for structural and dynamic biology. Rep Prog Phys 75:102601

    Article  CAS  PubMed  Google Scholar 

  136. Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fenalti G, Zatsepin NA, Betti C et al (2015) Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nat Struct Mol Biol 22:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang H, Unal H, Gati C et al (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nogly P, James D, Wang D et al (2015) Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wei X, Su X, Cao P et al (2016) Structure of spinach photosystem II—LHCII supercomplex at 3.2 A resolution. Nature 534:69–74

    Article  CAS  PubMed  Google Scholar 

  141. Stevenson HP, Makhov AM, Calero M et al (2014) Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proc Natl Acad Sci U S A 111:8470–8475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stevenson HP, DePonte DP, Makhov AM et al (2014) Transmission electron microscopy as a tool for nanocrystal characterization pre- and post-injector. Philos Trans R Soc Lond Ser B Biol Sci 369:20130322

    Article  CAS  Google Scholar 

  143. Barnes CO, Kovaleva EG, Fu X et al (2016) Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Arch Biochem Biophys 602:61–68

    Article  CAS  PubMed  Google Scholar 

  144. Nannenga BL, Gonen T (2014) Protein structure determination by MicroED. Curr Opin Struct Biol 27:24–31

    Article  CAS  PubMed  Google Scholar 

  145. Pande K, Hutchison CDM, Groenhof G et al (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Cherezov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ishchenko, A., Abola, E.E., Cherezov, V. (2017). Crystallization of Membrane Proteins: An Overview. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics