Skip to main content

Radiation Damage in Macromolecular Crystallography

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Radiation damage inflicted on macromolecular crystals during X-ray diffraction experiments remains a limiting factor for structure solution, even when samples are cooled to cryotemperatures (~100 K). Efforts to establish mitigation strategies are ongoing and various approaches, summarized below, have been investigated over the last 15 years, resulting in a deeper understanding of the physical and chemical factors affecting damage rates. The recent advent of X-ray free electron lasers permits “diffraction-before-destruction” by providing highly brilliant and short (a few tens of fs) X-ray pulses. New fourth generation synchrotron sources now coming on line with higher X-ray flux densities than those available from third generation synchrotrons will bring the issue of radiation damage once more to the fore for structural biologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, London

    Google Scholar 

  2. Hope H (1988) Cryocrystallography of biological macromolecules: a generally applicable method. Acta Crystallogr B 44:22–26

    Article  PubMed  Google Scholar 

  3. Teng T (1990) Mounting of crystals for macromolecular crystallography in a free-standing thin film. J Appl Cryst 23:387–391

    Article  CAS  Google Scholar 

  4. Rodgers DW (1994) Cryocrystallography. Structure 2:1135–1140

    Article  CAS  PubMed  Google Scholar 

  5. Rodgers DW (1997) Practical cryocrystallography. Methods Enzymol 276:183–203

    Article  CAS  PubMed  Google Scholar 

  6. Garman EF, Schneider TR (1997) Macromolecular cryocrystallography. J Appl Cryst 30:211–237

    Article  Google Scholar 

  7. Garman E (1999) Cool data: quantity AND quality. Acta Crystallogr D Biol Crystallogr 55:1641–1653

    Article  CAS  PubMed  Google Scholar 

  8. Nave C, Garman EF (2005) Towards an understanding of radiation damage in cryocooled macromolecular crystals. J Synchrotron Radiat 12:257–260

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez A, Nave C (1994) Radiation damage in protein crystals at low temperature. Acta Crystallogr D Biol Crystallogr 50:874–877

    Article  CAS  PubMed  Google Scholar 

  10. Nave C (1995) Applications of synchrotron X-radiation. Radiation damage in protein crystallography. Radiat Phys Chem 45:483–490

    Article  CAS  Google Scholar 

  11. Sanishvili R, Yoder DW, Pothineni SB et al (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc Natl Acad Sci U S A 108:6127–6132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Neill P, Stevens DL, Garman EF (2002) Physical and chemical considerations of damage induced in protein crystals by synchrotron radiation: a radiation chemical perspective. J Synchrotron Radiat 9:329–332

    Article  PubMed  CAS  Google Scholar 

  13. Cosier J, Glazer AM (1986) A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J Appl Cryst 19:105–107

    Article  CAS  Google Scholar 

  14. Owen RL, Axford D, Nettleship JE et al (2012) Outrunning free radicals in room-temperature macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 68:810–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones GD, Lea JS, Symons MC et al (1987) Structure and mobility of electron gain and loss centres in proteins. Nature 330:772–773

    Article  CAS  PubMed  Google Scholar 

  16. Owen RL, Holton JM, Schulze-Briese C et al (2009) Determination of X-ray flux using silicon pin diodes. J Synchrotron Radiat 16:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeldin OB, Gerstel M, Garman EF (2013) RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J Appl Cryst 46:1225–1230

    Article  CAS  Google Scholar 

  18. Zeldin OB, Gerstel M, Garman EF (2013) Optimizing the spatial distribution of dose in X-ray macromolecular crystallography. J Synchrotron Radiat 20:49–57

    Article  CAS  PubMed  Google Scholar 

  19. Flot D, Mairs T, Giraud T et al (2010) The ID23-2 structural biology microfocus beamline at the ESRF. J Synchrotron Radiat 17:107–118

    Article  CAS  PubMed  Google Scholar 

  20. Cowan JA, Nave C (2008) The optimum conditions to collect X-ray data from very small samples. J Synchrotron Radiat 15:458–462

    Article  CAS  PubMed  Google Scholar 

  21. Murray JW, Garman EF, Ravelli RBG (2004) X-ray absorption by macromolecular crystals: the effects of wavelength and crystal composition on absorbed dose. J Appl Cryst 37:513–522

    Article  CAS  Google Scholar 

  22. Paithankar KS, Owen RL, Garman EF (2009) Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. J Synchrotron Radiat 16:152–162

    Article  CAS  PubMed  Google Scholar 

  23. Paithankar KS, Garman EF (2010) Know your dose: RADDOSE. Acta Crystallogr D Biol Crystallogr 66:381–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krojer T, von Delft F (2011) Assessment of radiation damage behaviour in a large collection of empirically optimized datasets highlights the importance of unmeasured complicating effects. J Synchrotron Radiat 18:387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeldin OB, Brockhauser S, Bremridge J et al (2013) Predicting the X-ray lifetime of protein crystals. Proc Natl Acad Sci U S A 110:20551–20556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henderson R (1990) Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc R Soc London Ser B 241:6–8

    Article  CAS  Google Scholar 

  27. Murray JW, Rudino-Pinera E, Owen RL et al (2005) Parameters affecting the X-ray dose absorbed by macromolecular crystals. J Synchrotron Radiat 12:268–275

    Article  CAS  PubMed  Google Scholar 

  28. Owen RL, Rudino-Pinera E, Garman EF (2006) Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci U S A 103:4912–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Howells MR, Beetz T, Chapman HN et al (2009) An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. J Electron Spectrosc 170:4–12

    Article  CAS  Google Scholar 

  30. Roedig P, Duman R, Sanchez-Weathertby J et al (2016) Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J Appl Cryst 49:968–975

    Article  CAS  Google Scholar 

  31. Ravelli RB, McSweeney SM (2000) The ‘fingerprint’ that X-rays can leave on structures. Structure 8:315–328

    Article  CAS  PubMed  Google Scholar 

  32. Burmeister WP (2000) Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallogr D Biol Crystallogr 56:328–341

    Article  CAS  PubMed  Google Scholar 

  33. Teng T, Moffat K (2000) Primary radiation damage of protein crystals by intense synchrotron radiation. J Synchrotron Radiat 7:313–317

    Article  CAS  PubMed  Google Scholar 

  34. Murray J, Garman E (2002) Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography. J Synchrotron Radiat 9:347–354

    Article  CAS  PubMed  Google Scholar 

  35. Ravelli RB, Theveneau P, McSweeney S et al (2002) Unit-cell volume change as a metric of radiation damage in crystals of macromolecules. J Synchrotron Radiat 9:355–360

    Article  CAS  PubMed  Google Scholar 

  36. Meents A, Gutmann S, Wagner A et al (2010) Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proc Natl Acad Sci U S A 107:1094–1099

    Article  CAS  PubMed  Google Scholar 

  37. Kmetko J, Husseini NS, Naides M et al (2006) Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 62:1030–1038

    Article  PubMed  CAS  Google Scholar 

  38. Diederichs K, McSweeney S, Ravelli RB (2003) Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr D Biol Crystallogr 59:903–909

    Article  PubMed  CAS  Google Scholar 

  39. De la Mora E, Carmichael I, Garman EF (2011) Effective scavenging at cryotemperatures: further increasing the dose tolerance of protein crystals. J Synchrotron Radiat 18:346–357

    Article  PubMed  CAS  Google Scholar 

  40. Helliwell JR (1988) Protein crystal perfection and the nature of radiation damage. J Cryst Growth 90:259–272

    Article  CAS  Google Scholar 

  41. Weik M, Ravelli RB, Kryger G et al (2000) Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci U S A 97:623–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weik M, Berges J, Raves ML et al (2002) Evidence for the formation of disulfide radicals in protein crystals upon X-ray irradiation. J Synchrotron Radiat 9:342–346

    Article  CAS  PubMed  Google Scholar 

  43. Sutton KA, Black PJ, Mercer KR et al (2013) Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies. Acta Crystallogr D Biol Crystallogr 69:2381–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsui Y, Sakai K, Murakami M et al (2002) Specific damage induced by X-ray radiatioin and structural changes in the primary photoreaction of bacteriorhodopsin. J Mol Biol 324:469–481

    Article  CAS  PubMed  Google Scholar 

  45. Kort R, Hellingwerf KJ, Ravelli RB (2004) Initial events in the photocycle of photoactive yellow protein. J Biol Chem 279:26417–26424

    Article  CAS  PubMed  Google Scholar 

  46. Mees A, Klar T, Gnau P et al (2004) Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306:1789–1793

    Article  CAS  PubMed  Google Scholar 

  47. Fioravanti E, Vellieux FM, Amara P et al (2007) Specific radiation damage to acidic residues and its relation to their chemical and structural environment. J Synchrotron Radiat 14:84–91

    Article  CAS  PubMed  Google Scholar 

  48. Sjoblom B, Polentarutti M, Djinovic-Carugo K (2009) Structural study of X-ray induced activation of carbonic anhydrase. Proc Natl Acad Sci U S A 106:10609–10613

    Article  PubMed  PubMed Central  Google Scholar 

  49. Adam V, Carpentier P, Violot S et al (2009) Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein. J Am Chem Soc 131:18063–18065

    Article  CAS  PubMed  Google Scholar 

  50. Dubnovitsky AP, Ravelli RB, Popov AN et al (2005) Strain relief at the active site of phosphoserine aminotransferase induced by radiation damage. Protein Sci 14:1498–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bury C, Garman EF, Ginn HM et al (2015) Radiation damage to nucleoprotein complexes in macromolecular crystallography. J Synchrotron Radiat 22:213–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bury CS, McGeehan JE, Antson AA et al (2016) RNA protects a nucleoprotein complex against radiation damage. Acta Crystallogr D Biol Crystallogr 72:648–657

    Article  CAS  Google Scholar 

  53. Ravelli RB, Leiros HK, Pan B et al (2003) Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11:217–224

    Article  CAS  PubMed  Google Scholar 

  54. Banumathi S, Zwart PH, Ramagopal UA et al (2004) Structural effects of radiation damage and its potential for phasing. Acta Crystallogr D Biol Crystallogr 60:1085–1093

    Article  PubMed  CAS  Google Scholar 

  55. Ravelli RB, Nanao MH, Lovering A et al (2005) Phasing in the presence of radiation damage. J Synchrotron Radiat 12:276–284

    Article  CAS  PubMed  Google Scholar 

  56. Nanao MH, Ravelli RB (2006) Phasing macromolecular structures with UV-induced structural changes. Structure 14:791–800

    Article  CAS  PubMed  Google Scholar 

  57. McGeehan J, Ravelli RGB, Murray JW et al (2009) Colouring cryo-cooled crystals: online microspectrophotometry. J Synchrotron Radiat 16:163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carpentier P, Royant A, Ohana J et al (2007) Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy. J Appl Cryst 40:1113–1122

    Article  CAS  Google Scholar 

  59. Yano J, Kern J, Irrgang K-D et al (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci U S A 102:12047–12052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Holton JM (2007) XANES measurements of the rate of radiation damage to selenomethionine side chains. J Synchrotron Radiat 14:51–72

    Article  CAS  PubMed  Google Scholar 

  61. Utschig LM, Chemerisov SD, Tiede DM et al (2008) Electron paramagnetic resonance study of radiation damage in photosynthetic reaction center crystals. Biochemistry 47:9251–9257

    Article  CAS  PubMed  Google Scholar 

  62. Beitlich T, Kuhnel K, Schulze-Briese C et al (2007) Cryoradiolytic reduction of crystalline heme proteins: analysis by UV-Vis spectroscopy and X-ray crystallography. J Synchrotron Radiat 14:11–23

    Article  CAS  PubMed  Google Scholar 

  63. Hersleth HP, Andersson KK (2011) How different oxidation states of crystalline myoglobin are influenced by X-rays. Biochim Biophys Acta 1814:785–796

    Article  CAS  PubMed  Google Scholar 

  64. Borshchevskiy V, Round E, Erofeev I et al (2014) Low-dose X-ray radiation induces structural alterations in proteins. Acta Crystallogr D Biol Crystallogr 70:2675–2685

    Article  CAS  PubMed  Google Scholar 

  65. Baxter RH, Seagle BL, Ponomarenko N et al (2004) Specific radiation damage illustrates light-induced structural changes in the photosynthetic reaction center. J Am Chem Soc 126:16728–16729

    Article  CAS  PubMed  Google Scholar 

  66. Sato M, Shibata N, Morimoto Y et al (2004) X-ray induced reduction of the crystal of high-molecular-weight cytochrome c revealed by microspectrophotometry. J Synchrotron Radiat 11:113–116

    Article  CAS  PubMed  Google Scholar 

  67. Echalier A, Goodhew CF, Pettigrew GW et al (2006) Activation and catalysis of the di-heme cytochrome c peroxidase from Paracoccus pantotrophus. Structure 14:107–117

    Article  CAS  PubMed  Google Scholar 

  68. Pearson AR, Pahl R, Kovaleva EG et al (2007) Tracking X-ray-derived redox changes in crystals of a methylamine dehydrogenase/amicyanin complex using single-crystal UV/Vis microspectrophotometry. J Synchrotron Radiat 14:92–98

    Article  CAS  PubMed  Google Scholar 

  69. Li F, Burgie ES, Yu T et al (2015) X-ray radiation induces deprotonation of the bilin chromophore in crystalline D Radiodurans phytochrome. J Am Chem Soc 137:2792–2795

    Article  CAS  PubMed  Google Scholar 

  70. Berglund GI, Carlsson GH, Smith AT et al (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463–468

    Article  CAS  PubMed  Google Scholar 

  71. Aoyama H, Muramoto K, Shinzawa-Itoh K et al (2009) A peroxide bridge between Fe and Cu ions in the O2 reduction site of fully oxidized cytochrome c oxidase could suppress the proton pump. Proc Natl Acad Sci U S A 106:2165–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Corbett MC, Latimer MJ, Poulos TL et al (2007) Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation. Acta Crystallogr D Biol Crystallogr 63:951–960

    Article  CAS  PubMed  Google Scholar 

  73. Macedo S, Pechlaner M, Schmid W et al (2009) Can soaked-in scavengers protect metalloprotein active sites from reduction during data collection? J Synchrotron Radiat 16:191–204

    Article  CAS  PubMed  Google Scholar 

  74. Schlichting I, Berendzen J, Chu K et al (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  75. Horrell S, Antonyuk SV, Eady RR et al (2016) Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal. IUCr J 3:271–281

    Article  CAS  Google Scholar 

  76. Bui S, von Stetten D, Jambrina PG et al (2014) Direct evidence for a peroxide intermediate and a reactive enzyme-substrate-dioxygen configuration in a cofactor-free oxidase. Angew Chem Int Ed 53:13710–13714

    Article  CAS  Google Scholar 

  77. Garman EF, Doublie S (2003) Cryocooling of macromolecular crystals: optimization methods. Methods Enzymol 368:188–216

    Article  CAS  PubMed  Google Scholar 

  78. Southworth-Davies RJ, Medina MA, Carmichael I et al (2007) Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography. Structure 15:1531–1541

    Article  CAS  PubMed  Google Scholar 

  79. Warkentin M, Hopkins JB, Badeau R et al (2013) Global radiation damage: temperature dependence, time dependence and how to outrun it. J Synchrotron Radiat 20:7–13

    Article  CAS  PubMed  Google Scholar 

  80. Warkentin M, Thorne RE (2010) Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements. Acta Crystallogr D Biol Crystallogr 66:1092–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Halle B (2004) Biomolecular cryocrystallography: structural changes during flash-cooling. Proc Natl Acad Sci U S A 101:4793–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vitkup D, Ringe D, Petsko GA et al (2000) Solvent mobility and the protein ‘glass’ transition. Nat Struct Biol 7:34–38

    Article  CAS  PubMed  Google Scholar 

  83. Weik M, Kryger G, Schreurs AM et al (2001) Solvent behaviour in flash-cooled protein crystals at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 57:566–573

    Article  CAS  PubMed  Google Scholar 

  84. Schiro G, Fichou Y, Gaillat F-X et al (2015) Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat Commun 6:6490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chinte U, Shah B, Chen Y-S et al (2007) Cryogenic (<20 K) helium cooling mitigates radiation damage to protein crystals. Acta Crystallogr D Biol Crystallogr 63:486–492

    Article  CAS  PubMed  Google Scholar 

  86. Meents A, Wagner A, Schneider R et al (2007) Reduction of X-ray-induced radiation damage of macromolecular crystals by data collection at 15 K: a systematic study. Acta Crystallogr D Biol Crystallogr 63:302–309

    Article  CAS  PubMed  Google Scholar 

  87. Colletier JP, Bourgeois D, Sanson B et al (2008) Shoot-and-Trap: use of specific x-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography. Proc Natl Acad Sci U S A 105:11742–11747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weik M, Colletier J-P (2010) Temperature-dependent macromolecular X-ray crystallography. Acta Crystallogr D Biol Crystallogr 66:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280:558–563

    Article  CAS  PubMed  Google Scholar 

  90. Keedy DA, Kenner LR, Warkentin M et al (2015) Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. Elife 4:e07574

    Article  PubMed  PubMed Central  Google Scholar 

  91. Blake C, Phillips DC (1962) Effects of X-irradiation on single crystals of myoglobin. In: Proceedings of the Symposium on the Biological Effects of Ionising Radiation at the Molecular Level, Vienna, pp 183–191

    Google Scholar 

  92. Jacquamet L, Ohana J, Joly J et al (2004) Automated analysis of vapor diffusion crystallization drops with an X-ray beam. Structure 12:1219–1225

    Article  CAS  PubMed  Google Scholar 

  93. Kalinin Y, Kmetko J, Bartnik A et al (2005) A new sample mounting technique for room-temperature macromolecular crystallography. J Appl Cryst 38:333–339

    Article  CAS  Google Scholar 

  94. Sanchez-Weatherby J, Bowler MW, Huet J et al (2009) Improving diffraction by humidity control: a novel device compatible with X-ray beamlines. Acta Crystallogr D Biol Crystallogr 65:1237–1246

    Article  CAS  PubMed  Google Scholar 

  95. Fraser JS, van den Bedem H, Samelson AJ et al (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108:16247–16252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Warkentin M, Badeau R, Hopkins JB et al (2012) Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s-1. Acta Crystallogr D Biol Crystallogr 68:124–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Owen RL, Paterson N, Axford D et al (2014) Exploiting fast detectors to enter a new dimension in room-temperature crystallography. Acta Crystallogr D Biol Crystallogr 70:1248–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Coquelle N, Brewster AS, Kapp U et al (2015) Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallogr D Biol Crystallogr 71:1184–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arndt UW (1984) Optimum X-ray wavelength for protein crystallography. J Appl Cryst 17:118–119

    Article  CAS  Google Scholar 

  100. Weiss MS, Panjikar S, Mueller-Dieckmann C et al (2005) On the influence of the incident photon energy on the radiation damage in crystalline biological samples. J Synchrotron Radiat 12:304–309

    Article  CAS  PubMed  Google Scholar 

  101. Shimizu N, Hirata K, Hasegawa K et al (2007) Dose dependence of radiation damage for protein crystals studied at various X-ray energies. J Synchrotron Radiat 14:4–10

    Article  CAS  PubMed  Google Scholar 

  102. Homer C, Cooper L, Gonzalez A (2011) Energy dependence of site-specific radiation damage in protein crystals. J Synchrotron Radiat 18:338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fourme R, Honkimäki V, Girard E et al (2012) Reduction of radiation damage and other benefits of short wavelengths for macromolecular crystallography data collection. J Appl Cryst 45:652–661

    Article  CAS  Google Scholar 

  104. Liebschner D, Rosenbaum G, Dauter M et al (2015) Radiation decay of thaumatin crystals at three X-ray energies. Acta Crystallogr D Biol Crystallogr 71:772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sliz P, Harrison SC, Rosenbaum G (2003) How does radiation damage in protein crystals depend on X-ray dose? Structure 11:13–19

    Article  CAS  PubMed  Google Scholar 

  106. Leiros HK, Timmins J, Ravelli RB et al (2006) Is radiation damage dependent on the dose rate used during macromolecular crystallography data collection? Acta Crystallogr D Biol Crystallogr 62:125–132

    Article  PubMed  CAS  Google Scholar 

  107. Mhaisekar A, Kazmierczak MJ, Banerjee R (2005) Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams. J Synchrotron Radiat 12:318–328

    Article  CAS  PubMed  Google Scholar 

  108. Allan EG, Kander MC, Carmichael I et al (2013) To scavenge or not to scavenge, that is STILL the question. J Synchrotron Radiat 20:23–36

    Article  CAS  PubMed  Google Scholar 

  109. Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kmetko J, Warkentin M, Englich U et al (2011) Can radiation damage to protein crystals be reduced using small-molecule compounds? Acta Crystallogr D Biol Crystallogr 67:881–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Barker AI, Southworth-Davies RJ, Paithankar KS et al (2009) Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay. J Synchrotron Radiat 16:205–216

    Article  CAS  PubMed  Google Scholar 

  112. Neutze R, Wouts R, van der Spoel D et al (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757

    Article  CAS  PubMed  Google Scholar 

  113. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hirata K, Shinzawa-Itoh K, Yano N et al (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11:734–736

    Article  CAS  PubMed  Google Scholar 

  116. Chreifi G, Baxter EL, Doukov T et al (2016) Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer. Proc Natl Acad Sci U S A 113:1226–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lomb L, Barends TRM, Kassemeyer S et al (2011) Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser. Phys Rev B Condens Matter Mater Phys B84:214111

    Article  CAS  Google Scholar 

  118. Barty A, Caleman C, Aquila A et al (2012) Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat Photonics 6:35–40

    Article  CAS  PubMed  Google Scholar 

  119. Nass K, Foucar L, Barends TR et al (2015) Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J Synchrotron Radiat 22:225–238

    Article  CAS  PubMed  Google Scholar 

  120. Galli L, Son S-K, Klinge M et al (2015) Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse. Struct Dyn 2:041703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ian Carmichael and Kathryn Shelley for their comments on this contribution, Charles Bury and Eugenio de la Mora for making the figures, and Markus Gerstel for carrying out a survey of the PDB regarding the temperature of data collection. We also acknowledge those many colleagues with whom we have discussed the issues related to radiation damage in MX. We especially thank the ESRF for access to beamtime since 2000 under the Radiation Damage BAG, which has allowed us to carry out systematic studies on many aspects of the topic.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elspeth F. Garman or Martin Weik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Garman, E.F., Weik, M. (2017). Radiation Damage in Macromolecular Crystallography. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics