Skip to main content

Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Molecular replacement (MR), a method for solving the crystallographic phase problem using phases derived from a model of the target structure, has proven extremely valuable, accounting for the vast majority of structures solved by X-ray crystallography. However, when the resolution of data is low, or the starting model is very dissimilar to the target protein, solving structures via molecular replacement may be very challenging. In recent years, protein structure prediction methodology has emerged as a powerful tool in model building and model refinement for difficult molecular replacement problems. This chapter describes some of the tools available in Rosetta for model building and model refinement specifically geared toward difficult molecular replacement cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scalpin G (2013) Molecular replacement then and now. Acta Crystallogr D Biol Crystallogr 69:2266–2275

    Article  Google Scholar 

  2. Rossmann MG, Blow DM (1962) The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallogr 15:24–31

    Article  CAS  Google Scholar 

  3. Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66:22–25

    Article  CAS  PubMed  Google Scholar 

  4. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Cryst 40:658–674

    Article  CAS  Google Scholar 

  5. Keegan RM, Winn MD (2007) Automated search-model discovery and preparation for structure solution by molecular replacement. Acta Crystallogr D Biol Crystallogr 63:447–457

    Article  CAS  PubMed  Google Scholar 

  6. Long F, Vagin AA, Young P et al (2008) BALBES: a molecular-replacement pipeline. Acta Crystallogr D Biol Crystallogr 64:125–132

    Article  CAS  PubMed  Google Scholar 

  7. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV et al (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 64:61–69

    Article  CAS  PubMed  Google Scholar 

  8. Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002–1011

    Article  PubMed  Google Scholar 

  9. Rohl CA, Strauss CE, Misura KM et al (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  CAS  PubMed  Google Scholar 

  10. Leaver-Fay A, Tyka M, Lewis SM et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abergel C (2013) Molecular replacement: tricks and treats. Acta Crystallogr D Biol Crystallogr 69:2167–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94

    Article  CAS  PubMed  Google Scholar 

  14. Stein N (2008) CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J Appl Cryst 41:641–643

    Article  CAS  Google Scholar 

  15. Bunkóczi G, Echols N, McCoy A et al (2013) Phaser.MRage: automated molecular replacement. Acta Crystallogr D Biol Crystallogr 69:2276–2286

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nugent T, Cozzetto D, Jones D (2014) Evaluation of predictions in the CASP10 model refinement category. Proteins 82:98–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qian B, Raman S, Das R et al (2007) High-resolution structure prediction and the crystallographic phase problem. Nature 450:259–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang Y, Faraggi E, Zhao H et al (2011) Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of the query and corresponding native properties of templates. Bioinformatics 27:2076–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Källberg M, Wang H, Wang S et al (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522

    Article  PubMed  PubMed Central  Google Scholar 

  21. Modi V, Xu Q, Adhikari S et al (2016) Assessment of template-based modeling of protein structure in CASP11. Proteins 84(Suppl. 1):200–220

    Article  PubMed  Google Scholar 

  22. Song Y, DiMaio F, Wang RY et al (2013) High-resolution comparative modeling with RosettaCM. Structure 21:1735–1742

    Article  CAS  PubMed  Google Scholar 

  23. Khatib F, DiMaio F, Foldit Contenders Group et al (2011) Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat Struct Mol Biol 18:1175–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gilski M, Kazmierczyk M, Krzywda S et al (2011) High-resolution structure of a retroviral protease folded as a monomer. Acta Crystallogr D Biol Crystallogr 67:907–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DiMaio F, Rämisch S, Adolf-Bryfogle J (2013) RosettaCM - Comparative Modeling with Rosetta. https://www.rosettacommons.org/docs/latest/application_documentation/structure_prediction/RosettaCM

  26. Martínez D, Grosse C, Himmel S et al (2009) ARCIMBOLDO: crystallographic ab initio protein solution below atomic resolution. Nat Methods 6:651–653

    Article  Google Scholar 

  27. Stokes-Reesa I, Sliz P (2010) Protein structure determination by exhaustive search of Protein Data Bank derived databases. Proc Natl Acad Sci U S A 107:21476–21481

    Article  Google Scholar 

  28. Das R, Baker D (2009) Prospects for de novo phasing with de novo protein models. Acta Crystallogr D Biol Crystallogr 65:169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim D, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DiMaio F, Terwilliger T, Read R et al (2011) Improving molecular replacement by density- and energy- guided protein structure optimization. Nature 473:540–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DiMaio F, Echols N, Headd J et al (2013) Improved protein crystal structures at low resolution by integrated refinement with Phenix and Rosetta. Nat Methods 10:1102–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang PS, Oberdorfer G, Xu C et al (2014) High thermodynamic stability of parametrically designed helical bundles. Science 346:481–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  CAS  PubMed  Google Scholar 

  35. Nicholls RA, Long F, Murshudov GN (2012) Low-resolution refinement tools in REFMAC5. Acta Crystallogr D Biol Crystallogr 68:404–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Afonine PV, Grosse-Kunstleve RW, Echols N et al (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68:352–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schröder G, Levitt M, Brunger A (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 464:1218–1222

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang R, Kudryashev M, Li X et al (2015) Accurate de novo protein structure determination from near-atomic resolution cryo-EM maps. Nat Methods 12:335–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walls AC, Tortorici MA, Bosch BJ et al (2016) Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531:114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kudryashev M, Wang RYR, Brackmann M et al (2015) The structure of the type six secretion system contractile sheath solved by cryo-electron microscopy. Cell 160:952–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ovchinnikov S, Kamisetty H, Baker D (2014) Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information. Elife 3:e02030

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kim DE, DiMaio F, Wang RYR et al (2014) One contact for every twelve residues allows robust and accurate topology-level protein structure modeling. Proteins 82:208–218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

DiMaio, F. (2017). Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics