Skip to main content

Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helliwell JR, Ealick S, Doing P et al (1993) Towards the measurement of ideal data for macromolecular crystallography using synchrotron sources. Acta Crystallogr D Biol Crystallogr 49:120–128

    Article  CAS  PubMed  Google Scholar 

  2. Schiltz M, Kvick A, Svensson OS et al (1997) Protein crystallography at ultra-short wavelengths: feasibility study of anomalous-dispersion experiments at the xenon K-edge. J Synchrotron Radiat 4:287–297

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann MS, Müller HH, Stuhrmann HB (1993) Protein single-crystal diffraction with 5 Å synchrotron X-rays at the sulfur K-absorption edge. Acta Crystallogr D Biol Crystallogr 49:308–310

    Article  CAS  PubMed  Google Scholar 

  4. Stuhrmann S, Hütsch M, Trame C et al (1995) Anomalous dispersion with edges in the soft X-ray region: first results of diffraction from single crystals of ribosomes near the K-absorption edge of phosphorus. J Synchrotron Radiat 2:83–86

    Article  CAS  PubMed  Google Scholar 

  5. Stuhrmann S, Bartels KS, Braunwarth W et al (1997) Anomalous dispersion with edges in the soft X-ray region: first results of diffraction from single crystals of trypsin near the K-absorption edge of sulfur. J Synchrotron Radiat 4:298–310

    Article  CAS  PubMed  Google Scholar 

  6. Behrens W, Otto H, Stuhrmann HB et al (1998) Sulfur distribution in bacteriorhodopsin from multiple wavelength anomalous diffraction near the sulfur K-edge with synchrotron X-ray radiation. Biophys J 75:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carpentier P, Berthet-Colominas C, Capitan M et al (2000) Anomalous X-ray diffraction with soft X-ray synchrotron radiation. Cell Mol Biol 46:915–935

    CAS  PubMed  Google Scholar 

  8. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weiss MS, Sicker T, Djinović Carugo K et al (2001) On the routine use of soft X-rays in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 57:689–695

    Article  CAS  PubMed  Google Scholar 

  10. Weiss MS, Sicker T, Hilgenfeld R (2001) Soft X-rays, high redundancy and proper scaling: a new procedure for automated structure determination via SAS. Structure 9:771–777

    Article  CAS  PubMed  Google Scholar 

  11. Djinovic Carugo K, Helliwell JR, Stuhrmann H et al (2005) Softer and soft X-rays in macromolecular crystallography. J Synchrotron Radiat 12:410–419

    Article  CAS  PubMed  Google Scholar 

  12. Blow DM (1958) The structure of haemoglobin. VII. Determination of phase angles in the non-centrosymmetric [100] zone. Proc R Soc A247:302–336

    Article  Google Scholar 

  13. Yang C, Pflugrath JW, Courville DA et al (2003) Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation. Acta Crystallogr D Biol Crystallogr 59:1943–1957

    Article  PubMed  Google Scholar 

  14. Anderson DH, Weiss MS, Eisenberg D (1996) A challenging case for protein crystal structure determination: the mating pheromone Er-1 from Euplotes raikovi. Acta Crystallogr D Biol Crystallogr 52:469–480

    Article  CAS  PubMed  Google Scholar 

  15. Kwiatkowski W, Noel JP, Choe S (2000) Use of Cr K α radiation to enhance the signal from anomalous scatterers including sulphur. J Appl Cryst 33:876–881

    Article  CAS  Google Scholar 

  16. Arndt UW (1984) Optimum X-ray wavelength for protein crystallography. J Appl Cryst 17:118–119

    Article  CAS  Google Scholar 

  17. Polikarpov I (1997) Protein crystallography in the soft X-ray region: crystal lifetime and diffraction efficiency. J Synchrotron Radiat 4:17–20

    Article  CAS  PubMed  Google Scholar 

  18. Polikarpov I, Teplyakov A, Oliva G (1997) The ultimate wavelength for protein crystallography? Acta Crystallogr D Biol Crystallogr 53:734–737

    Article  CAS  PubMed  Google Scholar 

  19. Murray JW, Garman EF, Ravelli RBG (2004) X-ray absorption by macromolecular crystals: the effects of wavelength and crystal composition on absorbed dose. J Appl Cryst 37:513–522

    Article  CAS  Google Scholar 

  20. Helliwell JR (1993) The choice of X-ray wavelength in macromolecular crystallography. Daresbury CCP4 study weekend Proceedings DL/SCI/R34. CCLRC Daresbury Laboratory, Warrington, UK, pp 80–88

    Google Scholar 

  21. Teplyakov A, Oliva G, Polikarpov I (1998) On the choice of an optimal wavelength in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 54:610–614

    Article  CAS  PubMed  Google Scholar 

  22. Weiss MS, Panjikar S, Mueller-Dieckmann C et al (2005) On the influence of the incident photon energy on the radiation damage in crystalline biological samples. J Synchrotron Radiat 12:304–309

    Article  CAS  PubMed  Google Scholar 

  23. Mueller-Dieckmann C, Panjikar S, Tucker PA et al (2005) On the routine use of soft X-rays in macromolecular crystallography, part III—the optimal data collection wavelength. Acta Crystallogr D Biol Crystallogr 61:1263–1272

    Article  PubMed  Google Scholar 

  24. Hendrickson WA, Teeter MM (1981) Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature 290:107–113

    Article  CAS  Google Scholar 

  25. Dauter Z, Dauter M, de La Fortelle E et al (1999) Can anomalous signal of sulfur become a tool for solving protein crystal structures? J Mol Biol 289:83–92

    Article  CAS  PubMed  Google Scholar 

  26. Liu ZJ, Vysotski ES, Chen CJ et al (2000) Structure of the Ca2+-regulated photoprotein obelin at 1.7 Å resolution determined directly from its sulfur substructure. Protein Sci 9:2085–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gordon EJ, Leonard GA, McSweeney S et al (2001) The C1 subunit of α-crustacyanin: the de novo phasing of the crystal structure of a 40 kDa homodimeric protein using the anomalous scattering from S atoms combined with direct methods. Acta Crystallogr D Biol Crystallogr 57:1230–1237

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, Chen LR, Zhou XE et al (2004) The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. J Mol Biol 341:73–91

    Article  CAS  PubMed  Google Scholar 

  29. Gentry HR, Singer AU, Betts L et al (2005) Structural and biochemical characterization of CIB1 delineates a new family of EF-hand-containing proteins. J Biol Chem 280:8407–8415

    Article  CAS  PubMed  Google Scholar 

  30. Weiss MS, Mander G, Hedderich R et al (2004) Determination of a novel structure by a combination of long wavelength sulfur phasing and radiation damage induced phasing. Acta Crystallogr D Biol Crystallogr 60:686–695

    Article  PubMed  Google Scholar 

  31. Kitamura M, Okuyama M, Tanzawa F et al (2008) Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron. J Biol Chem 283:36326–36337

    Article  Google Scholar 

  32. Liu Q, Dahmane T, Zhang Z et al (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Q, Liu Q, Hendrickson WA (2013) Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data. Acta Crystallogr D Biol Crystallogr 69:1314–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weinert T, Olieric V, Waltersperger S et al (2015) Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 12:131–133

    Article  CAS  PubMed  Google Scholar 

  35. El Omari K, Lourin O, Kadlec J et al (2014) Pushing the limits of sulfur SAD phasing: de novo structure solution of the N-terminal domain of the ectodomain of HCV E1. Acta Crystallogr D Biol Crystallogr 70:2197–2203

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gorgel M, Bøggild A, Ulstrup JJ et al (2015) Against the odds? De-novo structure determination of a type IV pilin with two cysteine residues by sulfur SAD. Acta Crystallogr D Biol Crystallogr 71:1095–1101

    Article  CAS  PubMed  Google Scholar 

  37. Rose JP, Wang BC, Weiss MS (2015) Native SAD is maturing. IUCr J 2:431–440

    Article  CAS  Google Scholar 

  38. Strahs G, Kraut J (1968) Low-resolution electron-density and anomalous-scattering-density maps of Chromatium high-potential iron protein. J Mol Biol 35:503–512

    Article  CAS  PubMed  Google Scholar 

  39. Einspahr H, Suguna K, Suddath FL et al (1985) The location of manganese and calcium ion cofactors in pea lectin crystals by use of anomalous dispersion and tuneable synchrotron X-radiation. Acta Crystallogr B 41:336–341

    Article  Google Scholar 

  40. Weiss MS, Panjikar S, Nowak E et al (2002) Metal binding to porcine pancreatic elastase: calcium or not calcium. Acta Crystallogr D Biol Crystallogr 58:1407–1412

    Article  PubMed  Google Scholar 

  41. Kuettner EB, Hilgenfeld R, Weiss MS (2002) The active principle of garlic at atomic resolution. J Biol Chem 277:46402–46407

    Article  CAS  PubMed  Google Scholar 

  42. Ferreira KN, Iverson TM, Maghlaoui K et al (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  43. Sekar K, Rajakannan V, Velmurugan D et al (2004) A redetermination of the structure of the triple mutant (K53,56,120M) of phospholipase A2 at 1.6 Å resolution using sulfur-SAS at 1.54 Å wavelength. Acta Crystallogr D Biol Crystallogr 60:1586–1590

    Article  CAS  PubMed  Google Scholar 

  44. Mueller-Dieckmann C, Panjikar S, Schmidt A et al (2007) On the routine use of soft X-rays in macromolecular crystallography, part IV— efficient determination of anomalous substructures in bio-macromolecules using longer X-ray wavelengths. Acta Crystallogr D Biol Crystallogr 63:366–380

    Google Scholar 

  45. Raaf J, Issinger OG, Niefind K (2008) Insights from soft X-rays: the chlorine and sulfur sub-structures of a CK2alpha/DRB complex. Mol Cell Biochem 316:15–23

    Article  CAS  PubMed  Google Scholar 

  46. Chothia C (1992) Proteins. One thousand families for the molecular biologist. Nature 357:543–544

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Fan K, Wang W (2004) The number of protein folds and their distribution over families in nature. Proteins 54:491–499

    Article  CAS  PubMed  Google Scholar 

  48. Unge J, Mueller-Dieckmann C, Panjikar S et al (2011) On the routine use of soft X-rays in macromolecular crystallography, part V – molecular replacement and anomalous scattering. Acta Crystallogr D Biol Crystallogr 67:729–738

    Article  CAS  PubMed  Google Scholar 

  49. Schuermann JP, Tanner JJ (2003) MRSAD: using anomalous dispersion from S atoms collected at Cu K α wavelength in molecular-replacement structure determination. Acta Crystallogr D Biol Crystallogr 59:1731–1736

    Article  PubMed  Google Scholar 

  50. Baker EN, Anderson BF, Dobbs AJ et al (1995) Use of iron anomalous scattering with multiple models and data sets to identify and refine a weak molecular replacement solution: structure analysis of cytochrome c’ from two bacterial species. Acta Crystallogr D Biol Crystallogr 51:282–289

    Article  CAS  PubMed  Google Scholar 

  51. Panjikar S, Parthasarathy V, Lamzin VS et al (2009) On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. Acta Crystallogr D Biol Crystallogr 65:1089–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brockhauser S, Di Michiel M, McGeehan JE et al (2008) X-ray tomographic reconstruction of macromolecular samples. J Appl Cryst 41:1057–1066

    Article  CAS  Google Scholar 

  53. Polentarutti M, Glazer R, Djinovic Carugo K (2004) A helium-purged beam path to improve soft and softer X-ray data quality. J Appl Cryst 37:319–324

    Article  CAS  Google Scholar 

  54. Alkire RW, Duke NEC, Rotella FJ (2008) Is your cold-stream working for you or against you? An in-depth look at temperature and sample motion. J Appl Cryst 41:1122–1133

    Article  CAS  Google Scholar 

  55. Alkire RW, Rotella FJ, Duke NEC (2013) Testing commercial protein crystallography sample mounting loops for movement in a cold-stream. J Appl Cryst 46:525–536

    Article  CAS  Google Scholar 

  56. Kitago Y, Watanabe N, Tanaka I (2005) Structure determination of a novel protein by sulfur SAD using chromium radiation in combination with a new crystal-mounting method. Acta Crystallogr D Biol Crystallogr 61:1013–1021

    Article  PubMed  Google Scholar 

  57. Kitago Y, Watanabe N, Tanaka I (2010) Semi-automated protein crystal mounting device for the sulphur single-wavelength anomalous diffraction method. J Appl Cryst 43:341–346

    Article  CAS  Google Scholar 

  58. Bowler MW, Mueller U, Weiss MS et al (2015) Automation and experience of controlled crystal dehydration: results from the European synchrotron HC1 collaboration. Cryst Growth Des 15:1043–1054

    Article  CAS  Google Scholar 

  59. Wierman JL, Alden JS, Kim CU et al (2013) Graphene as a protein crystal mounting material to reduce background scatter. J Appl Cryst 46:1501–1507

    Article  CAS  Google Scholar 

  60. Warren AJ, Crawshaw AD, Trincao J et al (2015) In vacuo X-ray data collection from graphene wrapped protein crystals. Acta Crystallogr D Biol Crystallogr 71:2079–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weiss MS (2001) Global indicators of X-ray data quality. J Appl Cryst 34:130–135

    Article  CAS  Google Scholar 

  62. Cianci M, Helliwell JR, Suzuki A (2008) The interdependence of wavelength, redundancy and dose in sulfur SAD experiments. Acta Crystallogr D Biol Crystallogr 64:1196–1209

    Article  CAS  PubMed  Google Scholar 

  63. Olieric V, Weinert T, Finke AD et al (2016) Data-collection strategy for challenging native SAD phasing. Acta Crystallogr D Biol Crystallogr 72:421–429

    Article  CAS  Google Scholar 

  64. Liu Q, Hendrickson WA (2017) Contemporary use of anomalous diffraction in biomolecular structure analysis. In: Wlodawer A, Dauter Z, Jaskolski M (eds) Protein crystallography. Springer, New York

    Google Scholar 

  65. Hendrickson WA, Pähler A, Smith JL et al (1989) Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A 86:2190–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brockhauser S, Ravelli RBG, McCarthy AA (2013) The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments. Acta Crystallogr D Biol Crystallogr 69:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Waltersperger S, Olieric V, Pradervand C et al (2015) PRIGo: a new multi-axis goniometer for macromolecular crystallography. J Synchrotron Radiat 22:895–900

    Article  PubMed  PubMed Central  Google Scholar 

  68. Broennimann C, Eikenberry EF, Henrich B et al (2006) The PILATUS 1M detector. J Synchrotron Radiat 13:120–130

    Article  CAS  PubMed  Google Scholar 

  69. Mueller U, Darowski N, Fuchs MR et al (2012) Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat 19:442–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mueller U, Förster R, Hellmig M et al (2015) The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. Eur Phys J Plus 130:141–150

    Article  Google Scholar 

  71. Diederichs K (2010) Quantifying instrument errors in macromolecular X-ray data sets. Acta Crystallogr D Biol Crystallogr 66:733–740

    Article  CAS  PubMed  Google Scholar 

  72. Holton JM, Classen S, Frankel KA et al (2014) The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures. FEBS J 281:4046–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Battye TGG, Kontogiannis L, Johnson O et al (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  75. Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Cryst 26:795–800

    Article  CAS  Google Scholar 

  76. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pflugrath JW (1999) The finer things in X-ray diffraction data collection. Acta Crystallogr D Biol Crystallogr 55:1718–1725

    Article  CAS  PubMed  Google Scholar 

  79. Mueller-Dieckmann C, Polentarutti M, Djinović-Carugo K et al (2004) On the routine use of soft X-rays in macromolecular crystallography, part II: data collection wavelength and scaling models. Acta Crystallogr D Biol Crystallogr 60:28–38

    Article  PubMed  Google Scholar 

  80. Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69:1204–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garman EF (2013) Radiation damage in macromolecular crystallography: what is it and why do we care? In: Read R, Urzhumtsev AG, Lunin VY (eds) Advancing methods for biomolecular crystallography. Springer, Dordrecht, pp 69–77

    Chapter  Google Scholar 

  82. Zeldin OB, Brockhauser S, Bremridge J et al (2013) Predicting the X-ray lifetime of protein crystals. Proc Natl Acad Sci U S A 110:20551–20556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lausi A, Polentarutti M, Onesti S et al (2015) Status of the crystallography beamlines at Elettra. Eur Phys J Plus 130:43

    Article  Google Scholar 

  84. De Sanctis D, Beteva A, Caserotto H et al (2012) ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. J Synchrotron Radiat 19:455–461

    Article  PubMed  Google Scholar 

  85. Cianci M, Antonyuk S, Bliss N et al (2005) A high-throughput structural biology/proteomics beamline at the SRS on a new multipole wiggler. J Synchrotron Radiat 12:455–466

    Article  CAS  PubMed  Google Scholar 

  86. Liebschner D, Yamada Y, Matsugaki N et al (2016) On the influence of crystal size and wavelength on native SAD phasing. Acta Crystallogr D Biol Crystallogr 72:728–741

    Article  CAS  Google Scholar 

  87. Hiraki M, Matsugaki N, Yamada Y et al (2016) Development of sample exchange robot PAM-HC for beamline BL-1A at the photon factory. AIP Conf Proc 1741:030029

    Article  Google Scholar 

  88. Wagner A, Duman R, Henderson K et al (2016) In vacuum long-wavelength macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 72:430–439

    Article  CAS  Google Scholar 

  89. Nakane T, Song C, Suzuki M et al (2015) Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 71:2519–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nass K, Meinhart A, Barends TRM et al (2016) Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCr J 3:180–191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank all of my friends and colleagues who have worked with me in this exciting field of longer-wavelength MX over many years and contributed many of the ideas and hypotheses presented in this chapter. I would also like to thank Rachel Kramer Green from the PDB for providing the statistics on the wavelength data in the PDB entries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred S. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Weiss, M.S. (2017). Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics