Skip to main content

Many Ways to Derivatize Macromolecules and Their Crystals for Phasing

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Due to the availability of many macromolecular models in the Protein Data Bank, the majority of crystal structures are currently solved by molecular replacement. However, truly novel structures can only be solved by one of the versions of the special-atom method. The special atoms such as sulfur, phosphorus or metals could be naturally present in the macromolecules, or could be intentionally introduced in a derivatization process. The isomorphous and/or anomalous scattering of X-rays by these special atoms is then utilized for phasing. There are many ways to obtain potentially useful derivatives, ranging from the introduction of special atoms to proteins or nucleic acids by genetic engineering or by chemical synthesis, to soaking native crystals in solutions of appropriate compounds with heavy and/or anomalously scattering atoms. No approach guarantees the ultimate success and derivatization remains largely a trial-and-error process. In practice, however, there is a very good chance that one of a wide variety of the available procedures will lead to successful structure solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Green DW, Ingram VM, Perutz MF (1954) The structure of haemoglobin. IV. Sign determination by the isomorphous replacement method. Proc R Soc Lond 225:287–307

    Article  CAS  Google Scholar 

  3. Perutz MF, Rossmann MG, Cullis AF et al (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185:416–421

    Article  CAS  PubMed  Google Scholar 

  4. Kendrew JC, Bodo G, Dintzis HM et al (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666

    Article  CAS  PubMed  Google Scholar 

  5. Blake CCF, Fenn RH, Johnson LN et al (2001) A historical perspective: how the structure of lysozyme was actually determined. In: International tables for crystallography, vol F. Kluwer Academic Publishers, Dordrecht, pp 745–772

    Chapter  Google Scholar 

  6. Hendrickson WA (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:51–58

    Google Scholar 

  7. Hendrickson WA, Teeter MM (1981) Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulfur. Nature 290:107–113

    Google Scholar 

  8. Hendrickson WA, Horton JR, LeMaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three dimensional structure. EMBO J 9:1665–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gluehmann M, Zarivach R, Bashan A et al (2001) Ribosomal crystallography: from poorly diffracting microcrystals to high-resolution structures. Methods 25:292

    Article  CAS  PubMed  Google Scholar 

  10. Dauter Z (2005) Use of polynuclear metal clusters in protein crystallography. Compt Rend Chimie 8:1808–1181

    Google Scholar 

  11. Dauter Z, Dauter M, Rajashankar KR (2000) Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr D Biol Crystallogr 56:232–237

    Google Scholar 

  12. Wang BC (1985) Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol 115:90–112

    Article  CAS  PubMed  Google Scholar 

  13. Ramagopal UA, Dauter M, Dauter Z (2003) Phasing on anomalous signal of sulfurs: what is the limit? Acta Crystallogr D59:1020–1027

    CAS  Google Scholar 

  14. Dauter Z, Adamiak DA (2001) Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. Acta Crystallogr D57:990–995

    CAS  Google Scholar 

  15. Garman EF (2010) Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Crystallogr D Biol Crystallogr 66:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ravelli RBG, Leiros HK, Pan B et al (2003) Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11:217–224

    Article  CAS  PubMed  Google Scholar 

  17. Liu Q, Liu Q, Hendrickson WA (2013) Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data. Acta Crystallogr D Biol Crystallogr 69:1314–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie J, Wang L, Brock A et al (2004) The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination. Nature Biotechnol 22:1297–1301

    Article  CAS  Google Scholar 

  19. Brzozowski AM, Derewenda U, Derewenda ZS et al (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–494

    Article  CAS  PubMed  Google Scholar 

  20. Hendrickson WA, Ogata CM (1997) Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol 276:494–513

    Article  CAS  PubMed  Google Scholar 

  21. Wilds CJ, Pattanayek R, Pan C et al (2002) Selenium-assisted nucleic acid crystallography: use of phosphoroselenates for MAD phasing of a DNA structure. J Am Chem Soc 124:14910–14916

    Article  CAS  PubMed  Google Scholar 

  22. Ramagopal UA, Dauter Z, Thirumuruhan R et al (2005) Radiation-induced site-specific damage of mercury derivatives: phasing and implications. Acta Crystallogr D Biol Crystallogr 61:1289–1298

    Article  PubMed  Google Scholar 

  23. Ennifar E, Carpentier P, Ferrer JL et al (2002) X-ray induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. Acta Crystallogr D Biol Crystallogr 58:1262–1268

    Article  CAS  PubMed  Google Scholar 

  24. Agniswamy J, Joyce MG, Hammer CH et al (2008) Towards a rational approach for heavy-atom derivative screening in protein crystallography. Acta Crystallogr D Biol Crystallogr 64:354–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boggon TJ, Shapiro L (2000) Screening for phasing atoms in protein crystallography. Structure 8:R143–R149

    Article  CAS  PubMed  Google Scholar 

  26. Carvin D, Islam SA, Sternberg MJE et al (1998) A databank of heavy-atom binding sites in protein crystals: a resource in use for multiple isomorphous replacement and anomalous scattering. Acta Crystallogr D Biol Crystallogr 54:1199–1206

    Article  PubMed  Google Scholar 

  27. Sun PD, Radaev S, Kattah M (2002) Generating isomprphous heavy-atom derivatives by a quick-soak method. Part I. Test cases. Acta Crystallogr D Biol Crystallogr 58:1092–1098

    Article  PubMed  Google Scholar 

  28. Kretsinger RH (1968) A crystallographic study of iodinated sperm whale metmyoglobin. J Mol Biol 31:315–318

    Article  CAS  PubMed  Google Scholar 

  29. Ban N, Freeborn B, Nissen P et al (1998) A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93:1105–1115

    Article  CAS  PubMed  Google Scholar 

  30. Clemons WM, May JLC, Wimberly BT et al (1999) Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution. Nature 400:833–840

    Article  CAS  PubMed  Google Scholar 

  31. Joyce MG, Radaev S, Sun PD (2010) A rational approach to heavy-atom derivative screening. Acta Crystallogr D Biol Crystallogr 66:358–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pasternak O, Bujacz A, Biesiadka J et al (2008) MAD phasing using the (Ta6Br12)2+ cluster: a retrospective study. Acta Crystallogr D Biol Crystallogr 64:595–606

    Article  CAS  PubMed  Google Scholar 

  33. Evans G, Bricogne G (2003) Triiodide derivatization in protein crystallography. Acta Crystallogr D Biol Crystallogr 59:1923–1929

    Article  PubMed  Google Scholar 

  34. Prangé T, Schiltz M, Pernot L et al (1998) Exploring hydrophobic sites in proteins with xenon or krypton. Proteins 30:61–73

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslawa Dauter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Dauter, M., Dauter, Z. (2017). Many Ways to Derivatize Macromolecules and Their Crystals for Phasing. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics