Skip to main content

Quality Assured Characterization of Stem Cells for Safety in Banking for Clinical Application

  • Protocol
  • First Online:
Stem Cell Banking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1590))

Abstract

The promise of human pluripotent stem cells to serve as a scalable and renewable starting material for “off the shelf” therapeutic cell products to repair or replace cells and tissues damaged by disease or injury is unparalleled. Whether originating from embryos or the genetic manipulation of adult tissue-derived cells, this prospective impact dictates a comprehensive yet practicable standard of quality assured characterization, blending existing and bespoke standards and considerations. Here, we provide a guide to qualifying the suitability of this resource for human clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Stem Cell Banking Initiative (2009) Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev 5:301–314

    Article  Google Scholar 

  2. Stacey GN, Crook JM, Hei D, Ludwig T (2013) Banking human induced pluripotent stem cells: lessons learned from embryonic stem cells? Cell Stem Cell 13(4):385–388

    Article  CAS  PubMed  Google Scholar 

  3. Crook JM, Peura TT, Kravets L et al (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1(5):490–494

    Article  CAS  PubMed  Google Scholar 

  4. De Sousa PA, Downie JM, Tye BJ et al (2016) Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res 17:379–390

    Google Scholar 

  5. Baghbaderani BA, Tian X, Neo BH et al (2015) cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Rep 5(4):647–659

    Article  CAS  Google Scholar 

  6. Wang J, Hao J, Bai D et al (2015) Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions. Stem Cell Res Ther 6:223

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guidance for Industry. Eligibility Determination for Donors of Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Tissue/ucm091345.pdf

  8. HFEA Code of Practice (8th edition), HFEA (2009)

    Google Scholar 

  9. The Human Fertilisation and Embryology Act (2008)

    Google Scholar 

  10. HTA Code of Practice on Research (2009)

    Google Scholar 

  11. Human Tissue (Quality and Safety for Human Application) Regulations 2007

    Google Scholar 

  12. Commission Directive 2006/17/EC: Implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells.

    Google Scholar 

  13. Taylor CJ, Peacock S, Chaudhry AN et al (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11:147–152

    Article  CAS  PubMed  Google Scholar 

  14. Blood Safety (and Quality) and Regulations, UK Statutory Instrument 2005 No 50 http://www.legislation.gov.uk/uksi/2005/50/pdfs/uksi_20050050_en.pdf

  15. The Advisory Committee on the Safety of Blood, Tissues and Organs (SaBTO) Report: Donations of starting material for advanced therapies. https://www.gov.uk/government/publications/donation-of-starting-material-for-advanced-cell-based-therapies

  16. Krejciova Z, Pells S, Cancellotti E et al (2011) Human embryonic stem cells rapidly take up and then clear exogenous human and animal prions in vitro. J Pathol 223(5):635–645

    Article  CAS  PubMed  Google Scholar 

  17. ISBT 128 managed by ICCBBA: a global standard for the identification, labelling, and information transfer of medical products of human origin. https://www.iccbba.org/tech-library/iccbba-documents/standards-documents.

  18. EU Directive 2015/565 regarding a Single European Code (SEC) for tissues and cells http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L0565&from=EN

  19. Coecke S, Balls M, Bowe G et al (2005) Guidance on good cell culture practice. a report of the second ECVAM task force on good cell culture practice. Altern Lab Anim 33(3):261–287

    CAS  PubMed  Google Scholar 

  20. The International Cell Line Authentication Committee (ICLAC). See http://standards.atcc.org/kwspub/home/the_international_cell_line_authentication_committee-iclac_/

  21. Butler JM, Coble MD, Vallone PM (2007) STRs vs. SNPs: thoughts on the future of forensic DNA testing. Forensic Sci Med Pathol 3(3):200–205

    Article  CAS  PubMed  Google Scholar 

  22. Isasi R, Andrews P, Baltz J et al (2014) Identifiability and privacy in pluripotent stem cell research. Cell Stem Cell 14(4):427–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andrews PW, Benvenisty N, McKay R et al (2005) The international stem cell initiative: toward benchmarks for human embryonic stem cell research. Nat Biotechnol 23:795–797

    Article  CAS  PubMed  Google Scholar 

  24. Carpenter MK, Frey-Vasconcells J, Rao M (2009) Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 27:606–613

    Article  CAS  PubMed  Google Scholar 

  25. De Sousa PA, Tye BJ, Bruce K et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9). Stem Cell Res 17:36–41

    Google Scholar 

  26. Gropp M, Shilo V, Vainer G et al (2012) Standardization of the teratoma assay for analysis of pluripotency of human ES cells and biosafety of their differentiated progeny. PLoS One 7(9):e45532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Müller FJ, Schuldt BM, Williams R et al (2001) A bioinformatic assay for pluripotency in human cells. Nat Methods 8(4):315–317

    Article  Google Scholar 

  28. Müller F.J., Brändl B., Loring J.F. (2008-2012) Assessment of human pluripotent stem cells with PluriTest. StemBook [Internet]. Cambridge (MA, USA), Harvard Stem Cell Institute

    Google Scholar 

  29. O’Connor MD, Kardel MD, Iosfina I et al (2008) Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells 26:1109–1116

    Article  PubMed  Google Scholar 

  30. Zangle T, Chun J, Teitell MA (2013) Quantification of biomass and cell motion in human pluripotent stem cell colonies. Biophys J 105:593–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amps K, Andrews PW, Anyfantis G et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132–1144

    Article  CAS  PubMed  Google Scholar 

  32. Association for Clinical Cytogenetics Professional Guidelines for Clinical Cytogenetics, General Best Practice Guidelines, 2007. http://www.acgs.uk.com/media/765607/acc_general_bp_mar2007_1.04.pdf

  33. Peterson SE, Loring JF (2013) Genomic instability in pluripotent stem cells: implications for clinical applications. J Biol Chem 289:4578–4584

    Article  PubMed  PubMed Central  Google Scholar 

  34. Canham MA, Van Deusen A, Brison DR et al (2015) The molecular karyotype of 25 clinical-grade human embryonic stem cell lines. Sci Rep 26(5):17258

    Article  Google Scholar 

  35. Young L, Sung J, Stacey G, Masters JM (2010) Detection of mycoplasma in cell cultures. Nat Protoc 5:929–934

    Article  CAS  PubMed  Google Scholar 

  36. EMA (2010) CHMP/CAT position statement on Creutzfeldt-Jakob disease and advanced therapy medicinal products. Committee for Medicinal Products for Human Use (CHMP) and Committee for Advanced Therapies (CAT), London, 23 June 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. Bruce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bruce, K.W., Campbell, J.D.M., De Sousa, P. (2017). Quality Assured Characterization of Stem Cells for Safety in Banking for Clinical Application. In: Crook, J., Ludwig, T. (eds) Stem Cell Banking. Methods in Molecular Biology, vol 1590. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6921-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6921-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6919-7

  • Online ISBN: 978-1-4939-6921-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics