Skip to main content

Cryopreservation: Vitrification and Controlled Rate Cooling

  • Protocol
  • First Online:
Stem Cell Banking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1590))

Abstract

Cryopreservation is the application of low temperatures to preserve the structural and functional integrity of cells and tissues. Conventional cooling protocols allow ice to form and solute concentrations to rise during the cryopreservation process. The damage caused by the rise in solute concentration can be mitigated by the use of compounds known as cryoprotectants. Such compounds protect cells from the consequences of slow cooling injury, allowing them to be cooled at cooling rates which avoid the lethal effects of intracellular ice. An alternative to conventional cooling is vitrification. Vitrification methods incorporate cryoprotectants at sufficiently high concentrations to prevent ice crystallization so that the system forms an amorphous glass thus avoiding the damaging effects caused by conventional slow cooling. However, vitrification too can impose damaging consequences on cells as the cryoprotectant concentrations required to vitrify cells at lower cooling rates are potentially, and often, harmful. While these concentrations can be lowered to nontoxic levels, if the cells are ultra-rapidly cooled, the resulting metastable system can lead to damage through devitrification and growth of ice during subsequent storage and rewarming if not appropriately handled.

The commercial and clinical application of stem cells requires robust and reproducible cryopreservation protocols and appropriate long-term, low-temperature storage conditions to provide reliable master and working cell banks. Though current Good Manufacturing Practice (cGMP) compliant methods for the derivation and banking of clinical grade pluripotent stem cells exist and stem cell lines suitable for clinical applications are available, current cryopreservation protocols, whether for vitrification or conventional slow freezing, remain suboptimal. Apart from the resultant loss of valuable product that suboptimal cryopreservation engenders, there is a danger that such processes will impose a selective pressure on the cells selecting out a nonrepresentative, freeze-resistant subpopulation. Optimizing this process requires knowledge of the fundamental processes that occur during the freezing of cellular systems, the mechanisms of damage and methods for avoiding them. This chapter draws together the knowledge of cryopreservation gained in other systems with the current state-of-the-art for embryonic and induced pluripotent stem cell preservation in an attempt to provide the background for future attempts to optimize cryopreservation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Unger C, Skottman H, Blomberg P et al (2008) Good manufacturing practice and clinical human embryonic stem cell lines. Hum Mol Genet 17(R1):R48–R53

    Article  CAS  PubMed  Google Scholar 

  2. Bosse R, Singhofer-Wowra M, Rosenthal F, Schulz G (1997) Good manufacturing practice production of human stem cells for somatic cell and gene therapy. Stem Cells 15(s2):275–280

    Article  PubMed  Google Scholar 

  3. Rayment EA, Williams DJ (2010) Concise review: mind the gap: challenges in characterisation and quantifying cell and tissue-based therapies for clinical translation. Stem Cells 28:996–1004

    PubMed  PubMed Central  Google Scholar 

  4. Stacey G (2007) Standardisation of cell culture procedures. In: Stacey G, Davis J (eds) Medicines from animal cell culture. Wiley, Chichester, pp 589–601

    Chapter  Google Scholar 

  5. Chen VC, Couture SM, Ye J et al (2012) Scalable GMP compliant suspension culture systems for human ES cells. Stem Cell Res 8:388–402

    Article  CAS  PubMed  Google Scholar 

  6. Allegrucci C, Young LE (2007) Differences between human embryonic stem cell lines. Hum Reprod Update 13:103120

    Google Scholar 

  7. Stacey G (2007) Risk assessment of cell culture procedures. In: Stacey G, Davis J (eds) Medicines from animal cell culture. Wiley, Chichester, pp 569–587

    Chapter  Google Scholar 

  8. Coopman K (2011) Large scale compatible methods for the preservation of human embryonic stem cells: current perspectives. Biotechnol Prog 27:1511–1521

    Article  CAS  PubMed  Google Scholar 

  9. Rajamani K, Li Y-S, Hseih D-K et al (2014) Genetic and epigenetic instability of stem cells. Cell Transplant 23:417–433

    Article  PubMed  Google Scholar 

  10. Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 38:107–123

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mazur P (2004) Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, Boca Raton, pp 3–65

    Chapter  Google Scholar 

  12. Muldrew K, Acker JP, Elliot JAW, McGann LE (2004) The water to ice transition: implications for living cells. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, Boca Raton, pp 67–108

    Chapter  Google Scholar 

  13. Pegg DE (2005) The role of vitrification techniques of cryopreservation in reproductive medicine. Hum Fertil (Camb) 8:231–239

    Article  CAS  Google Scholar 

  14. Franks F (1982) The properties of aqueous solutions at subzero temperatures. In: Franks F (ed) Water a Comprehensive Treatise, vol 7. Plenum Press, New York & London, pp 215–338

    Google Scholar 

  15. Wilson PW, Heneghan AF, Haymet ADJ (2003) Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46:88–98

    Article  CAS  PubMed  Google Scholar 

  16. Lovelock JE (1953) The haemolysis of human red blood cells by freezing and thawing. Biochim Biophys Acta 10:414–426

    Article  CAS  PubMed  Google Scholar 

  17. Lovelock JE (1953) The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11:28–36

    Article  CAS  PubMed  Google Scholar 

  18. Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 7:347–369

    Article  Google Scholar 

  19. Leibo SP, McGrath JJ, Cravalho EG (1978) Microscopic observations of intracellular ice formation in unfertilised mouse ova as a function of cooling rate. Cryobiology 15:257–271

    Article  CAS  PubMed  Google Scholar 

  20. Griffiths JB, Cox CS, Beadle DJ et al (1979) Changes in cell size during the cooling, warming and post-thawing periods of the freeze-thaw cycle. Cryobiology 16:141–151

    Article  CAS  PubMed  Google Scholar 

  21. Mazur P, Leibo SP, Chu EHY (1972) A two-factor hypothesis of freezing injury – evidence from Chinese hamster tissue culture cells. Exp Cell Res 71:345–355

    Article  CAS  PubMed  Google Scholar 

  22. Mazur P, Leibo SP, Farrant J et al (1970) Interactions of cooling rate, warming rate and protective additive on the survival of frozen mammalian cells. In: Wolstenholme GEW, O’Connor M (eds) The frozen cell. J&A Churchill, London, pp 69–88

    Google Scholar 

  23. Mazur P (1976) Freezing and low temperature storage of living cells. In: Muhlbock O (ed) Proceedings of the 1974 workshop on basic aspects of freeze preservation of mouse strains. Jackson Laboratory. Gustav Fisher Verlag, Bar Harbour ME, pp 1–12

    Google Scholar 

  24. Hunt CJ, Armitage SE, Pegg DE (2003) Cryopreservation of umbilical cord blood: 2: Tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology 46:76–87

    Article  CAS  PubMed  Google Scholar 

  25. Souza H, Mazur P (1978) Temperature dependence of the survival of human erythrocytes frozen slowly in various concentrations of glycerol. Biophys J 23:89–100

    Article  Google Scholar 

  26. Rubinsky B, Pegg DE (1988) A mathematical model for the freezing process in biological tissues. Proc R Soc Lond 234:343–358

    Article  CAS  PubMed  Google Scholar 

  27. Pitt RE, Chandrasekaran M, Parks JE (1992) Performance of a kinetic model of intracellular ice formation based on the extent of supercooling. Cryobiology 29:359–373

    Article  CAS  PubMed  Google Scholar 

  28. Toner M, Cravalho EG, Karel M (1990) Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys 67:1582–1593

    Article  Google Scholar 

  29. Karlsson JOM, Cravalho EG, Toner M (1993) Intracellular ice formation: causes and consequences. Cryo-Letters 14:323–334

    Google Scholar 

  30. Franks F, Mathias SF, Galfre P et al (1983) Ice nucleation and freezing in undercooled cells. Cryobiology 20:298–309

    Article  CAS  PubMed  Google Scholar 

  31. Mazur P (1965) The role of membranes in the freezing of yeast and other cells. Ann N Y Acad Sci 125:658–676

    Article  CAS  PubMed  Google Scholar 

  32. Acker JP, Elliot JAW, McGann LE (2001) Intracellular ice propagation: experimental evidence for ice growth through membrane pores. Biophys J 81:1389–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berger WK, Uhrik B (1996) Freeze-induced shrinkage of individual cells and cell-to-cell propagation of intracellular ice in chains from salivary glands. Experientia 15:843–850

    Article  Google Scholar 

  34. Farrent J, Walter CA, Lee H, McGann LE (1977) Use of two-step cooling procedures to examine factors influencing cell survival following freezing and thawing. Cryobiology 14:273–286

    Article  Google Scholar 

  35. Levitt J (1962) A sulfhydryl-disulphide hypothesis of frost injury and resistance in plants. J Theor Biol 3:355–391

    Article  CAS  Google Scholar 

  36. Mazur P (1973) Freezing of living cells: Mechanisms and implications. Am J Physiol 247:C125–C147

    Google Scholar 

  37. Farrent J, Morris GJ (1973) Thermal shock and dilution shock as the causes of freezing injury. Cryobiology 10:134–140

    Article  Google Scholar 

  38. Steponkus PL, Dowgert MF (1981) Gas bubble formation during intracellular ice formation. Cryo-Letters 2:42–47

    Google Scholar 

  39. Shimada K, Asahina E (1975) Visualization of intracellular ice crystals formed in rapidly frozen cells at −27 °C. Cryobiology 12:209–218

    Article  CAS  PubMed  Google Scholar 

  40. Bischof JC, Rubinsky B (1993) Large ice crystals in the nucleus of rapidly frozen liver cells. Cryobiology 30:597–603

    Article  CAS  PubMed  Google Scholar 

  41. Mazur P (1990) Equilibrium, quasi-equilibrium and non-equilibrium freezing of mammalian embryos. Cell Biophys 17:53–92

    Article  CAS  PubMed  Google Scholar 

  42. Acker JP, McGann LE (2003) Protective effect of intracellular ice during freezing. Cryobiology 46:197–202

    Article  PubMed  Google Scholar 

  43. Armitage WJ, Juss BK (1996) The influence of cooling rate on the survival of frozen cells differs in monolayers and in suspension. Cryo-Letters 17:13–218

    Google Scholar 

  44. Zhurova M, Woods EJ, Acker JP (2010) Intracellular ice formation in confluent monolayers of human dental stem cells and membrane damage. Cryobiology 61:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pegg DE, Diaper MP (1988) On the mechanism of injury to slowly frozen erythrocytes. Biophys J 54:471–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mazur P, Cole KW (1989) Roles of the unfrozen fraction, salt concentration and changes in cell volume in the survival of frozen human erythrocytes. Cryobiology 26:1–29

    Article  CAS  PubMed  Google Scholar 

  47. Pegg DE, Diaper MP (1989) The “unfrozen fraction” hypothesis of freezing injury to human erythrocytes: a critical examination of the evidence. Cryobiology 26:30–43

    Article  CAS  PubMed  Google Scholar 

  48. Meryman HT (1970) The exceeding of a minimum tolerable cell volume in hypertonic suspensions as a cause of freezing injury. In: Wolstenholme GEW, O’Connor M (eds) The frozen cell. J&A Churchill, London, pp 51–64

    Google Scholar 

  49. Steponkus PL, Lynch DV (1989) Freeze/thaw induced destabilisation of the plasma membrane and the effects of cold acclimation. J Bioenerg Biomembr 21:21–41

    Article  CAS  PubMed  Google Scholar 

  50. Pegg DE, Diaper MP (1983) The packing effect in erythrocyte freezing. Cryo-Letters 4:129–136

    Google Scholar 

  51. De Loecker W, Koptelov VA, Grishenko VI, De Loecker P (1996) Effects of cell concentration on viability and metabolic activity during cryopreservation. Cryobiology 37:103–109

    Article  Google Scholar 

  52. Kruuv J (1986) Effects of pre and post-thaw cell-to-cell contact and trypsin on survival of freeze-thaw damaged mammalian cells. Cryobiology 23:126–133

    Article  CAS  PubMed  Google Scholar 

  53. Wells JR, Sullivan A, Cline MJ (1979) A technique for the separation and cryopreservation of myeloid stem cells from human bone marrow. Cryobiology 16:201–210

    Article  CAS  PubMed  Google Scholar 

  54. Rall WF, Polge C (1984) Effect of warming rate on mouse embryos frozen and thawed in glycerol. J Reprod Fertil 70:285–292

    Article  CAS  PubMed  Google Scholar 

  55. Pegg DE, Diaper MP, Skaer HL, Hunt CJ (1984) The effect of cooling rate and warming rate on the packing effect in human erythrocytes frozen and thawed in the presence of M glycerol. Cryobiology 21:491–502

    Article  CAS  PubMed  Google Scholar 

  56. Morris J, Acton E (2013) Controlled ice nucleation in cryopreservation: a review. Cryobiology 66(2):85–92

    Article  PubMed  CAS  Google Scholar 

  57. Lauterboeck L, Hofmann N, Mueller T, Glasmacher B (2015) Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells. Cryobiology 71:384–390

    Article  CAS  PubMed  Google Scholar 

  58. Ware CB, Nelson AM, Blau CA (2005) Controlled-rate freezing of human ES cells. Biotechniques 38:879–883

    Article  CAS  PubMed  Google Scholar 

  59. Yang PF, Hua TC, Wu J et al (2006) Cryopreservation of human embryonic stem cells: a protocol by programmed cooling. Cryo Letters 27:361–368

    PubMed  Google Scholar 

  60. Massie I, Selden C, Hodgson H, Fuller B (2011) Cryopreservation of encapsulated liver spheroids for a bioartificial liver: reducing latent injury using an ice nucleating agent. Tissue Eng Part C Methods 17:765–774

    Article  CAS  PubMed  Google Scholar 

  61. Katkov II, Kan NG, Cimadamore F et al (2011) DMSO-free programmed cryopreservation of fully dissociated and adherent human induced pluripotent stem cells. Stem Cells Int 2011:981606

    Article  PubMed  PubMed Central  Google Scholar 

  62. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666–676

    Article  CAS  PubMed  Google Scholar 

  63. Lovelock JE, Bishop M (1959) Prevention of freezing injury to cells by dimethyl sulphoxide. Nature 183:1394–1395

    Article  CAS  PubMed  Google Scholar 

  64. Lovelock JE (1953) The mechanism of the protective effect of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta 11:28–36

    Article  CAS  PubMed  Google Scholar 

  65. Pegg DE (1984) Red cell volume in glycerol/sodium chloride/water mixtures. Cryobiology 21:234–239

    Article  CAS  PubMed  Google Scholar 

  66. Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    Article  CAS  PubMed  Google Scholar 

  67. Stolzing A, Naaldijk Y, Fedorova V, Sethe S (2012) Hydroxyethylstarch in cryopreservation – mechanism, benefits and problems. Transfus Apher Sci 46:137–147

    Article  CAS  PubMed  Google Scholar 

  68. T’Joen V, De Grande L, Declercq H, Cornelissen M (2012) An efficient, economical slow-freezing method for large-scale human embryonic stem cell banking. Stem Cells Dev 21:721–728

    Article  PubMed  CAS  Google Scholar 

  69. Armitage WJ, Juss BK (1996) Osmotic response of mammalian cells: effects of permeating cryoprotectants on nonsolvent volume. J Cell Physiol 168:532–538

    Article  CAS  PubMed  Google Scholar 

  70. Pegg DE, Hunt CJ, Fong LP (1987) Osmotic properties of the rabbit corneal endothelium and their relevance to cryopreservation. Cell Biophys 10:169–189

    Article  CAS  PubMed  Google Scholar 

  71. Rubinstein P, Dobrila L, Rosenfield RE et al (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hanslick JL, Lau K, Noguchi KK et al (2009) Dimethyl sulphoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol Dis 34:1–10

    Article  CAS  PubMed  Google Scholar 

  73. Adler S, Pellizzer C, Paparella M, Hartung T, Bremer S (2006) The effects of solvents on embryonic stem cell differentiation. Toxicol In Vitro 20:265–271

    Article  CAS  PubMed  Google Scholar 

  74. Koike M, Ishino K, Kohno Y et al (1996) DMSO induces apoptosis in SV40-transformed human keratinocytes, but not in normal keratinocytes. Cancer Lett 108:185–193

    Article  CAS  PubMed  Google Scholar 

  75. Iwatani M, Ikegami K, Kremenska Y et al (2006) Dimethyl sulphoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells 24:2549–2556

    Article  CAS  PubMed  Google Scholar 

  76. Rowley SD, Anderson GL (1993) Effect of DMSO exposure without cryopreservation on hematopoietic progenitor cells. Bone Marrow Transplant 11:389–393

    CAS  PubMed  Google Scholar 

  77. Rall WF (1987) Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387–402

    Article  CAS  PubMed  Google Scholar 

  78. Vajta G, Nagy ZP (2006) Are programmable freezers still needed in the embryo laboratory? review on vitrification. Reprod Biomed Online 12:779–796

    Article  PubMed  Google Scholar 

  79. Fahy GM, Wowks B, Wu J, Paynter S (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35

    Article  CAS  PubMed  Google Scholar 

  80. Farrent J (1965) Mechanism of cell damage during freezing and thawing and its prevention. Nature 205:1284–1287

    Article  Google Scholar 

  81. Elford BC, Walter CA (1972) Effects of electrolyte composition and pH on the structural function of smooth muscle cooled to −79 °C in unfrozen media. Cryobiology 9:82–100

    Article  CAS  PubMed  Google Scholar 

  82. Pegg DE, Wang L, Vaughan D (2006) Cryopreservation of articular cartilage. Part 3: The liquidus-tracking method. Cryobiology 52:360–368

    Article  CAS  PubMed  Google Scholar 

  83. Moon JE, Lee JR, Jee BC et al (2008) Successful vitrification of human amnion-derived mesenchymal stem cells. Hum Reprod 23:1760–1770

    Article  PubMed  Google Scholar 

  84. Kurata H, Takakuwa K, Tanaka K (1994) Vitrification of hematopoietic progenitor cells obtained from human cord blood. Bone Marrow Transplant 14:261–263

    CAS  PubMed  Google Scholar 

  85. Hunt CJ, Timmons PM (2007) Cryopreservation of human embryonic stem cell lines. In: Day JG, Stacey G (eds) Cryopreservation and Freeze Drying Protocols, Methods in Molecular Biology, vol 368. Humana Press, Totowa, pp 261–270

    Chapter  Google Scholar 

  86. Reubinoff BE, Pera MF, Vajta G, Trounson AO (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194

    Article  CAS  PubMed  Google Scholar 

  87. Zhou CQ, Mai QY, Li T, Zhaung GJ (2004) Cryopreservation of human embryonic stem cells by vitrification. Chin Med J (Engl) 117:1050–1055

    Google Scholar 

  88. Richards M, Fong CY, Tan S et al (2004) An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22:779–789

    Article  PubMed  Google Scholar 

  89. Amit M, Carpenter MK, Inokuma MS et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  CAS  PubMed  Google Scholar 

  90. Li T, Zhou C, Liu C et al (2008) Bulk vitrification of human embryonic stem cells. Hum Reprod 23:358–364

    Article  CAS  PubMed  Google Scholar 

  91. Li T, Mai Q, Gao J, Zhou C (2010) Cryopreservation of human embryonic stem cells with a bulk vitrification method. Biol Reprod 82:848–853

    Article  CAS  PubMed  Google Scholar 

  92. Heng BC, Bested SM, Chan SW, Cao T (2005) A proposed design for the cryopreservation of intact and adherent human embryonic stem cell colonies. In Vitro Cell Biol Dev Anim 41:77–79

    Article  Google Scholar 

  93. Neubauer JC, Geijsen N, Zimmermann H (2015) Efficient cryopreservation of human pluripotent stem cells by surface-based vitrification. Methods Mol Biol 1257:321–328

    Article  CAS  PubMed  Google Scholar 

  94. Malpique R, Beier AFJ, Serra M et al (2012) Surface-based cryopreservation for human embryonic stem cells: a comparative study. Biotechnol Prog 28:1079–1087

    Article  CAS  PubMed  Google Scholar 

  95. McBurnie LD, Bardo B (2002) Validation of sterile filtration of liquid nitrogen. Pharm Tech:74–82

    Google Scholar 

  96. Mazzilli F, Delfino M, Imbrogno N et al (2006) Survival of micro-organisms in cryostorage of human sperm. Cell Tissue Bank 7:75–79

    Article  CAS  PubMed  Google Scholar 

  97. Mirabet V, Alvarez M, Solves P et al (2012) Use of liquid nitrogen during storage in a cell and tissue bank: contamination risk and effect on the detectability of potential viral contaminants. Cryobiology 64:121–123

    Article  CAS  PubMed  Google Scholar 

  98. Hawkins AE, Zuckerman MA, Briggs M et al (1996) Hepatitis B transmission nucleotide sequence analysis: linking an outbreak of acute hepatitis B to contamination of a cryopreservation tank. J Virol Methods 60:81–88

    Article  CAS  PubMed  Google Scholar 

  99. Dinnyés A, Dai Y, Jiang S, Yang X (2000) High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 63:513–518

    Article  PubMed  Google Scholar 

  100. Aerts JM, De Clercq JB, Andries S, Leroy JL, Van Aelst S, Bols PE (2008) Follicle survival and growth to antral stages in short-term murine ovarian cortical transplants after cryologic solid surface vitrification or slow-rate freezing. Cryobiology 57:163–169

    Article  CAS  PubMed  Google Scholar 

  101. Beebe LF, Bouwman EG, Mcllfatrick SM, Nottle MB (2011) Piglets produced from in vivo blastocysts vitrified using the cryologic vitrification method (solid surface vitrification) and a sealed storage container. Theriogenology 75:1453–1458

    Article  CAS  PubMed  Google Scholar 

  102. Vajta G, Holm P, Kuwayama M et al (1999) Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–58

    Article  Google Scholar 

  103. Kuleshova LL, Shaw JM (2000) A strategy for rapid cooling of mouse embryos within a double straw to eliminate the risk of contamination during storage in liquid nitrogen. Hum Reprod 15:2604–2609

    Article  CAS  PubMed  Google Scholar 

  104. Kuleshova LL, Tan FCK, Magalhaes R et al (2009) Effective cryopreservation of neural stem and progenitor cells without serum or proteins by vitrification. Cell Transplant 18:135–144

    Article  CAS  PubMed  Google Scholar 

  105. Desai N, Xu J, Tsulaia T et al (2011) Vitrification of mouse embryo-derived ICM cells: a tool for preserving embryonic stem cell potential. J Assist Reprod Genet 28:93–99

    Article  PubMed  Google Scholar 

  106. Nishigaki T, Teruma Y, Suemori H, Iwata H (2010) Cryopreservation of primate embryonic stem cells with chemically-defined solutions without DMSO. Cryobiology 60:159–164

    Article  CAS  PubMed  Google Scholar 

  107. Nishigaki T, Teruma Y, Nasu A et al (2001) Highly efficient cryopreservation of human induced pluripotent stem cells using a dimethyl sulphoxide-free solution. Int J Dev Biol 55:305–311

    Article  CAS  Google Scholar 

  108. Mitchell PD, Ratcliffe E, Hourd P et al (2014) A quality-by-design approach to risk reduction and optimization for human embryonic stem cell cryopreservation processes. Tissue Eng Part C Methods 20:941–950

    Article  PubMed  Google Scholar 

  109. Hunt CJ, Pegg DE, Armitage SE (2006) Optimising cryopreservation protocols for haematopoietic progenitor cells: a methodological approach for umbilical cord blood. Cryo Letters 27:73–85

    PubMed  Google Scholar 

  110. Kashuba Benson CM, Benson JD, Critser JK (2008) An improved cryopreservation method for a mouse embryonic stem cell line. Cryobiology 56:120–130

    Article  CAS  PubMed  Google Scholar 

  111. Kashuba CM, Benson JD, Critser JK (2014) Rationally optimised cryopreservation of multiple mouse embryonic stem cell lines: I - comparative fundamental cryobiology of multiple mouse embryonic stem cell lines and the implications for embryonic stem cell cryopreservation protocols. Cryobiology 68:166–175

    Article  CAS  PubMed  Google Scholar 

  112. Xu Y, Zhang L, Xu J et al (2014) Membrane permeability of the human pluripotent stem cells to Me2SO, glycerol and 1,2-propanediol. Arch Biochem Biophys 550-551:67–76

    Article  CAS  PubMed  Google Scholar 

  113. Ha YS, Jee BC, Suh CS et al (2005) Cryopreservation of human embryonic stem cells without the use of a programmable freezer. Hum Reprod 20:1779–1785

    Article  CAS  PubMed  Google Scholar 

  114. Heng BC, Kuleshova LL, Bested SM et al (2005) The cryopreservation of human embryonic stem cells. Biotechnol Appl Biochem 41:97–104

    Article  CAS  PubMed  Google Scholar 

  115. Li Y, Tan J, Li L (2010) Comparison of three methods for cryopreservation of human embryonic stem cells. Fertil Steril 93:999–1005

    Article  PubMed  Google Scholar 

  116. Lee JY, Lee JE, Kim DK et al (2010) High concentration of synthetic serum, stepwise equilibration and slow cooling as an efficient technique for large-scale cryopreservation of human embryonic stem cells. Fertil Steril 93:976–985

    Article  CAS  PubMed  Google Scholar 

  117. Crook JM, Peura TT, Kravets L et al (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494

    Article  CAS  PubMed  Google Scholar 

  118. Ware CB, Baran SW (2007) A controlled-cooling protocol for cryopreservation of human and non-human primate embryonic stem cells. Methods Mol Biol 407:43–49

    Article  CAS  PubMed  Google Scholar 

  119. Kashuba CM, Benson JD, Critser JK (2014) Rationally optimised cryopreservation of multiple mouse embryonic stem cell lines: II - mathematical prediction and experimental validation of optimal cryopreservation protocols. Cryobiology 68:166–175

    Article  CAS  PubMed  Google Scholar 

  120. Orellana MD, De Santis GC, Abraham KJ et al (2015) Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement. Cryobiology 71:151–160

    Article  CAS  PubMed  Google Scholar 

  121. Lin PY, Yang YC, Hung SH et al (2013) Cryopreservation of human embryonic stem cells by a programmed freezer with an oscillating magnetic field. Cryobiology 66:256–260

    Article  PubMed  Google Scholar 

  122. Morris GJ, Acton E, Faszer K et al (2006) Cryopreservation of murine embryos, human spermatozoa and embryonic stem cells using a liquid nitrogen-free, controlled rate freezer. Reprod Biomed Online 13:421–426

    Article  CAS  PubMed  Google Scholar 

  123. Massie I, Selden C, Hodgson H et al (2014) GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process. Tissue Eng Part C Methods 20:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wong RCB, Pebay A, Nguyen LTV et al (2004) Presence of functional gap junctions in human embryonic stem cells. Stem Cells 22:883–889

    Article  CAS  PubMed  Google Scholar 

  125. De Maio A, Vega VL, Contreras JE (2002) Gap junctions, homeostasis and injury. J Cell Physiol 191:269–282

    Article  CAS  PubMed  Google Scholar 

  126. Wong RCB, Pera MF, Pebay A (2008) Role of gap junctions in embryonic and somatic stem cells. Stem Cell Rev 4:283–292

    Article  CAS  PubMed  Google Scholar 

  127. Irimia D, Karlsson JO (2002) Kinetics and mechanisms of intracellular ice propagation in a micropatterned tissue construct. Biophys J 82:1858–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Toner M, Cravalho EG, Karel M (1991) Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys 67:1582–1593

    Article  Google Scholar 

  129. Skorobogatova NG, Novikov AN, Fuller BJ, Petrenko AY (2010) Importance of a three-stage cooling regime and induced nucleation during cryopreservation on the colony-forming potential and differentiation in mesenchymal stem/progenitor cells from human fetal liver. Cryo Letters 31:371–379

    PubMed  Google Scholar 

  130. Ji L, de Pablo J, Palacek SP (2004) Cryopreservation of adherent human embryonic stem cells. Biotechnol Bioeng 88:299–312

    Article  CAS  PubMed  Google Scholar 

  131. Serra M, Correia C, Malpique R et al (2011) Microencapsulation Technology: A powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One 6:–e23132

    Google Scholar 

  132. Nie Y, Bergendahl V, Hei DJ et al (2009) Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog 25:20–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sambu S, Xu X, Schiffer HA et al (2011) RGDS-functionalized alginates improve the survival rate of encapsulated embryonic stem cells during cryopreservation. Cryo Letters 32:389–401

    CAS  PubMed  Google Scholar 

  134. Valbuena D, Sanchez-Luengo S, Galan A et al (2008) Efficient method for slow cryopreservation of human embryonic stem cells in xeno-free conditions. RBM Online 17:127–135

    CAS  PubMed  Google Scholar 

  135. Xu X, Liu Y, Cui Z, Wei Y, Zhang L (2012) Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. J Biotechnol 162(2–3):224–231

    Article  CAS  PubMed  Google Scholar 

  136. Woods EJ, Liu J, Pollok K et al (2003) A theoretically-optimised method for cord blood stem cell cryopreservation. J Hematother Stem Cell Res 12:341–350

    Article  CAS  PubMed  Google Scholar 

  137. Berz D, McCormack EM, Winer ES et al (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82:463–472

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ock S-A, Rho G-J (2011) Effect of dimethyl sulphoxide on cryopreservation of porcine mesenchymal cells (pMSCs). Cell Transplant 20:1231–1239

    Article  PubMed  Google Scholar 

  139. Abrahamsen JF, Bakken AM, Bruserved Ø (2002) Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells. Transfusion 42:1573–1580

    Article  CAS  PubMed  Google Scholar 

  140. Xu X, Cowley S, Flaim CJ et al (2010) Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation. Biotechnol Prog 26:781–788

    Article  CAS  PubMed  Google Scholar 

  141. Imaizumi K, Iha M, Nishishita N et al (2016) A simple and efficient method of slow freezing for human embryonic stem cells and induced pluripotent stem cells. Methods Mol Biol 1341:15–24

    Google Scholar 

  142. T’Joen V, Cornelissen R (2012) Xeno-free plant-derived hydrolysate-based freezing of human embryonic stem cells. Stem Cells Dev 21:17161725

    Google Scholar 

  143. Dash SN, Routray P, Dash C et al (2008) Use of the non-toxic cryoprotectant trehalose enhances recovery and function of fish embryonic stem cells following cryogenic storage. Curr Stem Cell Res Ther 3:277–287

    Article  CAS  PubMed  Google Scholar 

  144. Wu CF, Tsung HC, Zhang WJ et al (2005) Improved cryopreservation of human embryonic stem cells with trehalose. Reprod Biomed Online 11:733–739

    Article  PubMed  Google Scholar 

  145. Lui Y, Xu X, Ma X et al (2010) Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethyl sulphoxide and well-defined freezing solutions. Biotechnol Prog 26:1635–1643

    Article  CAS  Google Scholar 

  146. Sharma S, Szurek EA, Rzucidio JS et al (2011) Cryobanking of embryoid bodies to facilitate basic research and cell based therapies. Rejuvenation Res 14:641–649

    Article  CAS  PubMed  Google Scholar 

  147. Xu Y, Zhang L, Xu J et al (2015) Sensitivity of human embryonic stem cells to different conditions during cryopreservation. Cryobiology 71:486–492

    Article  CAS  PubMed  Google Scholar 

  148. Matsumura K, Hyon S (2009) Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30:4842–4849

    Article  CAS  PubMed  Google Scholar 

  149. Matsumura K, Bae JY, Kim HH, Hyon SH (2011) Effective vitrification of human induced pluripotent stem cells using carboxylated ε-poly-L-lysine. Cryobiology 63:76–83

    Article  CAS  PubMed  Google Scholar 

  150. Ota A., Matsumura K., Lee J-J et al. (2016) StemCell Keep™ is effective for cryopreservation of human embryonic stem cells by vitrification. Cell Transplant Doi: 10.3727/096368916X692654

    Google Scholar 

  151. Grein TA (2010) Alternatives to dimethylsulfoxide for serum-free cryopreservation of human mesenchymal stem cells. Int J Artif Organs 33:370–380

    CAS  PubMed  Google Scholar 

  152. Freimark D, Sehl C, Weber C et al (2011) Systematic parameter optimization of a ME2SO- and serum-free cryopreservation protocol for human mesenchymal stem cells. Cryobiology 63:67–75

    Article  CAS  PubMed  Google Scholar 

  153. Sun H, Glasmacher B, Hofmann N (2012) Compatible solutes improve cryopreservation of human endothelial cells. Cryo Letters 33:485–493

    CAS  PubMed  Google Scholar 

  154. Baust JG, Gao D, Baust JM (2009) Cryopreservation an emerging paradigm change. Organogenesis 5:90–96

    Article  PubMed  PubMed Central  Google Scholar 

  155. de Boer F, Dräger AM, Pinedo HM et al (2002) Early apoptosis largely accounts for functional impairment of CD34+ cells in frozen-thawed stem cell grafts. J Hematother Stem Cell Res 11:951–963

    Article  PubMed  Google Scholar 

  156. Heng BC, Ye CP, Lui H et al (2006) Kinetics of cell death of frozen-thawed human embryonic stem cell colonies is reversibly slowed down by exposure to low temperatures. Zygote 14:341–348

    Article  CAS  PubMed  Google Scholar 

  157. Heng BC, Ye CP, Lui H et al (2006) Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. J Biomed Sci 13:433–435

    Article  CAS  PubMed  Google Scholar 

  158. Xu X, Cowley S, Flaim CJ et al (2009) The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol Prog 26:827–837

    Article  CAS  Google Scholar 

  159. Kim GA, Lee ST, Ahn JY et al (2010) Improved viability of freeze-thawed embryonic stem cells after exposure to glutathione. Fertil Steril 94:2409–2412

    Article  CAS  PubMed  Google Scholar 

  160. Baust JM, Van Burskirk R, Baust JG (2000) Cell Viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim 36:262–270

    Article  CAS  PubMed  Google Scholar 

  161. Ladwig J, Koch P, Endl E et al (2008) Lineage selection of functional and cryopreservable human embryonic stem cell-derived neurons. Stem Cells 26:1705–1712

    Article  Google Scholar 

  162. Heng BC, Clement MV, Cao T (2007) Caspase inhibitor Z-VAD-FMK enhances the freeze-thaw survival rate of human embryonic stem cells. Biosci Rep 27:257–264

    Article  CAS  PubMed  Google Scholar 

  163. Seo JM, Sohn MY, Suh JS et al (2011) Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology 62:167–173

    Article  CAS  PubMed  Google Scholar 

  164. Olson MF (2008) Applications for ROCK kinase inhibition. Curr Opin Cell Biol 20:22–248

    Article  CAS  Google Scholar 

  165. Kurosawa H (2012) Application of Rho-associated protein kinase (ROCK) inhibitor to human pluripotent stem cells. J Biosci Bioeng 114:577–581

    Article  CAS  PubMed  Google Scholar 

  166. Rizzino A (2010) Stimulating progress in regenerative medicine: improving the cloning and recovery of cryopreserved human pluripotent stem cells with ROCK inhibitors. Regen Med 5:799–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Watanabe K, Ueno M, Kamiya D et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  CAS  PubMed  Google Scholar 

  168. Li X, Meng G, Krawetz R et al (2008) The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev 17:1079–1086

    Article  CAS  PubMed  Google Scholar 

  169. Li X, Krawetz R, Liu S et al (2009) ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum Reprod 24:580–589

    Article  CAS  PubMed  Google Scholar 

  170. Martin-Ibañez R, Unger C, Strömberg A et al (2008) Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum Reprod 23:2744–2754

    Article  PubMed  CAS  Google Scholar 

  171. Barbaric I, Jones M, Buchner K et al (2011) Pinacidil enhances survival of cryopreserved human embryonic stem cells. Cryobiology 63(3):298–305

    Article  CAS  PubMed  Google Scholar 

  172. Zhang L, Xu Y, Xu J et al (2016) Protein kinase A inhibitor, H89, significantly enhances survival rate of dissociated human embryonic stem cells following cryopreservation. Cell Prolif 49:589–598

    Google Scholar 

  173. Ichikawa H, Nakata N, Abo Y et al (2012) Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells. Cryobiology 64:12–22

    Article  CAS  PubMed  Google Scholar 

  174. Krawetz RJ, Li X, Rancourt DE (2009) Human embryonic stem cells: caught between a ROCK inhibitor and a hard place. Bioessays 31:336–343

    Article  CAS  PubMed  Google Scholar 

  175. Gauthaman K, Fong CY, Subramanian A et al (2010) ROCK inhibitor Y-27632 increases thaw-survival rates and preserves stemness and differentiation potential of human Wharton's jelly stem cells after cryopreservation. Stem Cell Rev 6:665–676

    Article  CAS  PubMed  Google Scholar 

  176. Claassen DA, Desler MM, Rizzino A (2009) ROCK inhibition enhances the recovery and growth of cryopreserved human stem cells and human induced pluripotent stem cells. Mol Reprod Dev 76:722–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Baharvand H, Salekdeh GH, Taei A, Mollamohammadi S (2010) An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nat Protoc 5:588–594

    Article  CAS  PubMed  Google Scholar 

  178. Bueno C, Montes R, Memendez P (2010) The ROCK inhibitor Y-27632 negatively affects the expansion/survival of both fresh and cryopreserved cord blood-derived CD34+ hematopoietic progenitor cells: Y-27632 negatively affects the expansion/survival of CD34+HSPCs. Stem Cell Rev 6:215–223

    Article  CAS  PubMed  Google Scholar 

  179. Heng BC (2009) Effect of Rho-associated kinase (ROCK) inhibitor Y-27632 on the post-thaw viability of cryopreserved human bone marrow-derived mesenchymal stem cells. Tissue Cell 41:376–380

    Article  CAS  PubMed  Google Scholar 

  180. Couture LA (2010) Scalable pluripotent stem cell culture. Nat Biotechnol 28:562–563

    Article  CAS  PubMed  Google Scholar 

  181. Katkov II, Kim MS, Bajpai R et al (2006) Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology 53:194–205

    Article  CAS  PubMed  Google Scholar 

  182. Wagh V, Meganathan K, Jagtap S et al (2011) Effects of cryopreservation on the transcriptome of human embryonic stem cells after thawing and culturing. Stem Cell Rev 7:506–517

    Article  PubMed  Google Scholar 

  183. Chen HI, Tsai CD, Wang HT, Hwang SM (2006) Cryovial with partial membrane sealing can prevent liquid nitrogen penetration in submerged storage. Cryobiology 53:283–287

    Article  CAS  PubMed  Google Scholar 

  184. Woods EJ, Thirumala S (2011) Packing considerations for biopreservation. Transfus Med Hemother 38:149–156

    Article  PubMed  PubMed Central  Google Scholar 

  185. Woods EJ, Bagchi A, Goebel WS et al (2010) Container systems for enabling commercial production of cryopreserved cell therapy products. Regen Med 5:659–667

    Article  CAS  PubMed  Google Scholar 

  186. Amps KJ, Jones M, Baker D, Moore HD (2010) In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good manufacturing practice. Cryobiology 60:344–350

    Article  CAS  PubMed  Google Scholar 

  187. McCullough J, Haley R, Clay M et al (2010) Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer. Transfusion 50:808–829

    Article  PubMed  Google Scholar 

  188. Hunt CJ, Song YC, Bateson EA, Pegg DE (1994) Fractures in cryopreserved arteries. Cryobiology 31:506–515

    Article  CAS  PubMed  Google Scholar 

  189. Rall WF, Mazur TK (1989) Zona fracture damage and its avoidance during cryopreservation of mammalian embryos. Theriogenology 31:683–692

    Article  CAS  PubMed  Google Scholar 

  190. Tomlinson M, Sakkas D (2000) Is a review of standard procedures for cryopreservation needed? Safe and effective cryopreservation – should sperm banks and fertility centres move toward storage in nitrogen vapour? Hum Reprod 15:2460–2463

    Article  CAS  PubMed  Google Scholar 

  191. Rowley SD, Byrne DV (1992) Low-temperature storage of bone marrow in nitrogen vapour-phase refrigerators: decreased temperature gradients with an aluminium racking system. Transfusion 32:750–754

    Article  CAS  PubMed  Google Scholar 

  192. Hunt CJ, Pegg DE (1996) Improved temperature stability in gas phase nitrogen refrigerators: the use of a copper heat shunt. Cryobiology 33:544–551

    Article  Google Scholar 

  193. Bielanski A (2005) Non-transmission of bacterial and viral microbes to embryos and semen stored in the vapour phase of liquid nitrogen in dry shippers. Cryobiology 50:206–210

    Article  CAS  PubMed  Google Scholar 

  194. Bielanski A (2005) Experimental microbial contamination and disinfection of dry (vapour) shipper dewars designed for short-term storage and transportation of cryopreserved germplasm and other biological specimens. Theriogenology 63:1964–1957

    Article  Google Scholar 

  195. Stephenson E, Jacquet L, Miere C et al (2012) Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 7:1366–1381

    Article  CAS  PubMed  Google Scholar 

  196. De Sousa PA, Downie JM, Tye BJ et al (2016) Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res 17:379–390

    Google Scholar 

  197. Canham MA, Van Deusen A, Brison DR et al (2015) The molecular karyotype of 25 clinical-grade human embryonic stem cell lines. Sci Rep 5:17258. doi:10.1038/srep17258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Bergstrom R, Strom S, Holm F, Hovatta O (2011) Xeno-free culture of human pluripotent stem cells. Methods Mol Biol 767:125–136

    Article  PubMed  CAS  Google Scholar 

  199. Nishishita N, Muramatsu M, Kawamata S (2015) An effective freezing/thawing method for human pluripotent stem cells cultures in chemically-defined and feeder-free conditions. Am J Stem Cells 4:38–49

    CAS  PubMed  PubMed Central  Google Scholar 

  200. De Sousa PA, Tye BJ, Bruce K et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe016-A (RC12). Stem Cell Res 16:770–775

    Google Scholar 

  201. Miyazaki T, Nakatsuji N, Suemori H (2014) Optimization of slow cooling cryopreservation of human pluripotent stem cells. Genesis 52:49–55

    Article  CAS  PubMed  Google Scholar 

  202. Liu W, Chen G (2014) Cryopreservation of human pluripotent stem cells in defined medium. Curr Protoc Stem Cell Biol 31(1C.17):1–13

    Google Scholar 

  203. Meng G, Poon A, Liu S, Rancourt DE (2016) An effective and reliable xeno-free cryopreservation protocol for single human pluripotent stem cells. Methods Mol Biol 1516:47–56

    Google Scholar 

  204. Li Y, Ma T (2012) Bioprocessing of cryopreservation for large-scale banking of human pluripotent stem cells. Biores Open Access 1:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Andrews PW, Baker D, Benvenisty B et al (2015) Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regen Med 10(2 Suppl):1–44

    Article  CAS  PubMed  Google Scholar 

  206. Stacey GN, Healy L, Man J et al (2017) Fundamental points to consider in the cryopreservation and shipment of cells for human application. In: Connon CJ (ed) Bioprocessing for Cell Based Therapies. John Wiley &Sons Ltd, pp 167–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Hunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hunt, C.J. (2017). Cryopreservation: Vitrification and Controlled Rate Cooling. In: Crook, J., Ludwig, T. (eds) Stem Cell Banking. Methods in Molecular Biology, vol 1590. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6921-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6921-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6919-7

  • Online ISBN: 978-1-4939-6921-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics