Skip to main content

Culture, Adaptation, and Expansion of Pluripotent Stem Cells

  • Protocol
  • First Online:
Stem Cell Banking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1590))

Abstract

The ability of human pluripotent stem cells (hPSCs) to proliferate indefinitely in culture while maintaining their pluripotent properties makes them a powerful tool for use in research, and provides tremendous potential for diagnostic testing, and therapeutic application. Success in these areas, however, is dependent on the ability to effectively expand them in long-term culture while preserving their distinct nature. Contained in this chapter are detailed protocols for the feeder-independent culture and expansion of hPSCs using mTeSR1 medium and Matrigel matrix, and guidelines for the successful transfer of those cells to alternative platforms. These protocols have been used widely by laboratories around the world to successfully expand hPSCs for long-term culture while maintaining their undifferentiated, pluripotent state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  2. Reubinoff BE, Pera MF, Fong CY et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  CAS  PubMed  Google Scholar 

  3. Amit M, Carpenter MK, Inokuma MS et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  CAS  PubMed  Google Scholar 

  4. Ludwig TE, Levenstein ME, Jones JM et al (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185–187

    Article  CAS  PubMed  Google Scholar 

  5. Ludwig TE, Bergendahl V, Levenstein ME et al (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3(8):637–646

    Article  CAS  PubMed  Google Scholar 

  6. International Stem Cell Initiative Consortium (2010) Comparison of defined culture systems for feeder free propagation of human embryonic stem cells. In Vitro Cell Dev Biol Anim 46(3–4):247–258

    Google Scholar 

  7. Draper JS, Moore HD, Ruban LN et al (2004) Culture and characterization of human embryonic stem cells. Stem Cells Dev 13:325–236

    Article  CAS  PubMed  Google Scholar 

  8. Buzzard JJ, Gough NM, Crook JM, Colman A (2004) Karyotype of human ES cells during extended culture. Nat Biotechnol 22:381–382

    Article  CAS  PubMed  Google Scholar 

  9. Mitalipova MM, Rao RR, Hoyer DM et al (2004) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23:19–20

    Article  Google Scholar 

  10. Xu C, Inokuma MS, Denham J et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    Article  CAS  PubMed  Google Scholar 

  11. Chen G, Gulbranson DR, Hou Z et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ludwig TE, Thomson JA (2007) Defined, feeder-independent medium for human embryonic stem cell culture. Curr Protoc Stem Cell Biol:1C.2.1–1C.2.16

    Google Scholar 

  13. Braam SR, Zeinstra L, Litjens S et al (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26(9):2257–2265

    Article  CAS  PubMed  Google Scholar 

  14. Fazeli A, Liew CG, Matin MM et al (2011) Altered patterns of differentiation in karyotypically abnormal human embryonic stem cells. Int J Dev Biol 55(2):175–180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by funding from the Wisconsin Alumni Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tenneille E. Ludwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Brehm, J.L., Ludwig, T.E. (2017). Culture, Adaptation, and Expansion of Pluripotent Stem Cells. In: Crook, J., Ludwig, T. (eds) Stem Cell Banking. Methods in Molecular Biology, vol 1590. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6921-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6921-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6919-7

  • Online ISBN: 978-1-4939-6921-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics