Skip to main content

Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins

  • Protocol
  • First Online:
Telomeres and Telomerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1587))

Abstract

Chronic oxidative stress is the major endogenous metabolic stress and contributes directly to telomere shortening and senescence. Understanding the dysfunction of telomeres under oxidative stress will greatly facilitate healthy aging and advance the treatment of aging-related diseases. Here, we describe the KR-TEL (KillerRed induced DNA damage at telomeres) system that induces site-specific oxidative damage at telomeres. We have developed the KR-TEL system by fusing killerred with the shelterin component TRF1 (KR-TRF1) or other shelterin proteins. Killerred (KR), an engineered red fluorescent chromophore, is capable of generating site-specific superoxide upon green light activation (550–580 nm). When KR-TRF1 expressing cells are exposed to green or laser light at defined wavelength to activate KR, localized oxidative DNA damage will be induced at telomeres. KR-induced oxidative DNA damage shows a high degree of resemblance to the complex spectrum of DNA damage induced by radiation in terms of the ratios of oxidized bases and DNA strand breaks. Unlike current oxidation-inducing methods (e.g., IR, chemical, and toxicants), which create damage throughout the genome, KR produces spatially limited oxidative DNA damage only in its immediate proximity. This property of KR allows us to engineer oxidative damage specifically at the telomere in a light dose-dependent manner. Using the KR-TEL system to determine the DNA damage response and repair mechanisms at telomeres has several advantages, which make it an ideal system to investigate the mechanism of how telomere integrity is maintained and how this mechanism plays a role in cancer biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42(11):1039–1042

    Article  CAS  PubMed  Google Scholar 

  2. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23(16):2919–2933. doi:10.1038/sj.onc.1207518

    Article  CAS  PubMed  Google Scholar 

  3. Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336(6081):593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deng Y, Guo X, Ferguson DO, Chang S (2009) Multiple roles for MRE11 at uncapped telomeres. Nature 460(7257):914–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Z, Rhee DB, Lu J, Bohr CT, Zhou F, Vallabhaneni H, de Souza-Pinto NC, Liu Y (2010) Characterization of oxidative guanine damage and repair in mammalian telomeres. PLoS Genet 6(5):e1000951

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun L, Tan R, Xu J, LaFace J, Gao Y, Xiao Y, Attar M, Neumann C, Li GM, Su B, Liu Y, Nakajima S, Levine AS, Lan L (2015) Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death. Nucleic Acids Res. doi:10.1093/nar/gkv598

    Google Scholar 

  7. Cesare AJ, Kaul Z, Cohen SB, Napier CE, Pickett HA, Neumann AA, Reddel RR (2009) Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol 16(12):1244–1251

    Article  CAS  PubMed  Google Scholar 

  8. Kawanishi S, Oikawa S (2004) Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci 1019:278–284

    Article  CAS  PubMed  Google Scholar 

  9. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344

    Article  Google Scholar 

  10. Szalai VA, Singer MJ, Thorp HH (2002) Site-specific probing of oxidative reactivity and telomerase function using 7,8-dihydro-8-oxoguanine in telomeric DNA. J Am Chem Soc 124(8):1625–1631

    Article  CAS  PubMed  Google Scholar 

  11. Malinin NL, West XZ, Byzova TV (2011) Oxidation as “the stress of life”. Aging 3(9):906–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TB, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5(5):e110

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470(7334):359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bianchi A, Smith S, Chong L, Elias P, de Lange T (1997) TRF1 is a dimer and bends telomeric DNA. EMBO J 16(7):1785–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (NIH) (GM118833 and AG045545) to LL. Funding for open access charge: National Institutes of Health/ GM118833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tan, R., Lan, L. (2017). Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins. In: Songyang, Z. (eds) Telomeres and Telomerase. Methods in Molecular Biology, vol 1587. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6892-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6892-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6891-6

  • Online ISBN: 978-1-4939-6892-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics