Skip to main content

Peptide-Based Isolation of Argonaute Protein Complexes Using Ago-APP

  • Protocol
  • First Online:
MicroRNA Detection and Target Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1580))

Abstract

Argonaute (Ago) proteins bind small RNAs such as microRNAs (miRNAs) or short interfering RNAs (siRNAs), which guide them to distinct mRNAs for post-transcriptional gene silencing. Mammalian miRNA-guided gene silencing pathways mainly lead to translational repression and mRNA destabilization. To facilitate these processes, Ago proteins bind members of the GW protein family, which form central interaction platforms for the recruitment of downstream effector proteins. GW proteins use tryptophane residues (W) to bind to the surface of Ago proteins. This high affinity interaction is retained when a short, GST-fused GW peptide is used in biochemical pull-down experiments—an approach referred to as “Ago Affinity Purification by Peptides” (Ago-APP). Since the binding interface is conserved among different paralogues and different species, Ago-APP represents a universal tool to purify Ago proteins and associated small RNAs using samples from species with conserved miRNA pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    Article  CAS  PubMed  Google Scholar 

  4. Ipsaro JJ, Joshua-Tor L (2015) From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meister G et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  CAS  PubMed  Google Scholar 

  6. Liu J et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  PubMed  Google Scholar 

  7. Nakanishi K et al (2013) Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep 3:1893–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hauptmann J et al (2013) Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat Struct Mol Biol 20:814–817

    Article  CAS  PubMed  Google Scholar 

  9. Hauptmann J et al (2014) Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. RNA 20:1532–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Faehnle CR et al (2013) The making of a slicer: activation of human Argonaute-1. Cell Rep 3:1901–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schurmann N et al (2013) Molecular dissection of human Argonaute proteins by DNA shuffling. Nat Struct Mol Biol 20:818–826

    Article  PubMed  Google Scholar 

  12. Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433

    Article  CAS  PubMed  Google Scholar 

  13. Pfaff J, Meister G (2013) Argonaute and GW182 proteins: an effective alliance in gene silencing. Biochem Soc Trans 41:855–860

    Article  CAS  PubMed  Google Scholar 

  14. Jakymiw A et al (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1267–1274

    Article  PubMed  Google Scholar 

  15. Meister G et al (2005) Identification of novel argonaute-associated proteins. Curr Biol 15:2149–2155

    Article  CAS  PubMed  Google Scholar 

  16. Liu J et al (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1161–1166

    Article  CAS  Google Scholar 

  17. Rehwinkel J et al (2005) A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11:1640–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Behm-Ansmant I et al (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chekulaeva M et al (2011) miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18:1218–1226

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y et al (2014) A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell 54:737–750

    Article  CAS  PubMed  Google Scholar 

  21. Mathys H et al (2014) Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol Cell 54:751–765

    Article  CAS  PubMed  Google Scholar 

  22. Braun JE, Huntzinger E, Izaurralde E (2013) The role of GW182 proteins in miRNA-mediated gene silencing. Adv Exp Med Biol 768:147–163

    Article  CAS  PubMed  Google Scholar 

  23. Pfaff J et al (2013) Structural features of Argonaute-GW182 protein interactions. Proc Natl Acad Sci U S A 110:E3770–E3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336:1037–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baillat D, Shiekhattar R (2009) Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol Cell Biol 29:4144–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lazzaretti D, Tournier I, Izaurralde E (2009) The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA 15:1059–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hauptmann J et al (2015) Biochemical isolation of Argonaute protein complexes by Ago-APP. Proc Natl Acad Sci U S A 112:11841–11845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Shami M et al (2007) Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev 21:2539–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Till S et al (2007) A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol 14:897–903

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our research is supported by grants from the Deutsche Forschungsgemeinschaft (SFB 960, FOR2127), the European Research Council (ERC grant 242792 “sRNAs”, ITN RNATrain), the Bavarian Genome Research Network (BayGene), the German Cancer Aid and the Bavarian Systems-Biology Network (BioSysNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Meister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hauptmann, J., Meister, G. (2017). Peptide-Based Isolation of Argonaute Protein Complexes Using Ago-APP. In: Dalmay, T. (eds) MicroRNA Detection and Target Identification. Methods in Molecular Biology, vol 1580. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6866-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6866-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6864-0

  • Online ISBN: 978-1-4939-6866-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics