Skip to main content

A Histochemical Technique for the Detection of Annonaceous Acetogenins

  • Protocol
  • First Online:
Histochemistry of Single Molecules

Abstract

Annonaceous acetogenins (ACGs) are molecules with carbon numbers C35–C37, usually with tetrahydrofuran and tetrahydropyran rings and one terminal γ-lactone (usually α,β-unsaturated), in a large aliphatic chain that is varyingly hydroxylated, acetoxylated or ketonized. ACGs have ecological functions as insecticides and are pharmacologically promising due to their cytotoxic and antitumoral properties. They are found in the seeds, leaves, roots, flowers and fruits of annonaceous plants and can be detected during isolation via thin-layer chromatography using Kedde’s reagent, which reacts with the unsaturated lactone. This chapter describes the location in situ of ACGs in fresh sections of annonaceous seeds using Kedde’s reagent.

The acetogenins are located in the idioblasts, in the endosperm and in the embryonic axis during differentiation. This method can aid in the detection of ACGs with a terminal unsaturated γ-lactone in organs and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jolad SD, Hoffmann JJ, Schram KH et al (1982) Uvaricin, a new antitumor agent from Uvaria accuminata (Annonaceae). J Org Chem 47(16):3151–3153. doi:10.1021/jo00137a024

    Article  Google Scholar 

  2. Ruprecht JK, Hui YH, McLaughlin JL (1990) Annonaceous acetogenins: a rewiew. J Nat Prod 53(2):237–278

    Article  Google Scholar 

  3. Cavé A, Figadére B, Laurens A et al (1997) Acetogenins from Annonaceae. In: Herz W, Kirby GW, Moore RE et al (eds) Progress in the chemistry of organic natural products. Springer, New York, NY, pp 81–287

    Google Scholar 

  4. Alali FQ, Liu XX, McLaughlin JL (1999) Annonaceus acetogenins: recent progress. J Nat Prod 62:504–540

    Article  CAS  PubMed  Google Scholar 

  5. Bermejo A, Figadère B, Zafra-Polo MC et al (2005) Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat Prod Rep 22:269–303

    Article  CAS  PubMed  Google Scholar 

  6. Kirchner JG (1967) Thin layer chromatographphy. In: Perry ES, Weissberger A (eds) Technique of organic chemistry, vol 12. Interscience, New York, NY, pp 147–186

    Google Scholar 

  7. Kedde DL (1947) Bijdrage tot het chemisch onderzoek van Digitalispreparaten. Pharm Weekbl 82:741–757

    CAS  Google Scholar 

  8. Lewbart ML, Wehrli W, Reichstein T (1963) Die Cardenolide von Gongronema gazense (S. Moore) Bullock Glykoside und Aglykone. Helv Chim Acta 46(2):505–517

    Article  CAS  Google Scholar 

  9. Luckner M (1984) Secondary metabolism in microorganisms, plants, and animals, 2nd edn. Springer, New York, NY, p 247. doi:10.1007/978-3-662-02384-6

    Book  Google Scholar 

  10. Kovar KA, Francas G, Seidel R (1977) Zum mechanismus der Reaktionen nach Raymond, Kedde und Baljet. Archiv Pharmazie (Weinheim) 310(1):40–47

    Article  CAS  Google Scholar 

  11. Jork H, Funk W, Fischer W et al (1990) Thin-layer chromatography ‘reagents and detection methods’. Vol lb physical and chemical detection methods: activation reactions, reagent sequences, reagents II. English edition: Frank and Jennifer A. Hampson. VCH Weinheim, Basel, pp 263–267

    Google Scholar 

  12. Flasch H, Diembeck W (1981) Chemical and chromatographic method (methods for determination of cardiac glycosides). In: Greeff K (ed) Cardiac glycosides, part I, handbook of experimental pharmacology, vol 56. Springer, Berlin, pp 27–42

    Chapter  Google Scholar 

  13. Görög S (1983) Cardiac glycosides. Quantitative analysis of steroids. Stud Anal Chem 5:372–407

    Article  Google Scholar 

  14. Leboeuf M, Cavé A, Bhaumik PK et al (1982) The phytochemistry of the Annonaceae. Phytochemistry 21(12):2783–2813

    Article  CAS  Google Scholar 

  15. Zweig G, Sherma J (eds) (1972) Handbook of chromatography, vol II. Section 2.1. Detection reagents for paper and/or thin-layer chromatography. CRC Press The Chemical Rubber Co, Boca Raton, FL, p 170

    Google Scholar 

  16. Wagner H, Bladt S (1996) Plant drug analysis: a thin layer chromatography atlas. Springer, New York, NY, p 362, Appendix A: spray reagents

    Book  Google Scholar 

  17. Houghton JP, Raman A (1998) Handbook for the fractionation of natural extracts. Chapman and Hall, London, p 185, Appendix A. Recipes for chemical test reagents

    Book  Google Scholar 

  18. Parellada EA, Ferrero M, Cartagena E et al (2013) Laherradurin, a natural stressor, stimulates QS mechanism involved in biofilm formation of a PAHs degrading bacterium. Int Biodeter Biodegrad 2013(85):78–84

    Article  Google Scholar 

  19. González-Esquinca AR (2001) Contribución al estudio del género Annona (Annonaceae). Análisis fitoquímico de tres especies del estado de Chiapas. Tesis doctoral. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  20. De la Cruz-Chacón I (2001) Acetogeninas bioactivas de Annona diversifolia Safford. Tesis de Licenciatura. Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas

    Google Scholar 

  21. Abraján Hernández P (2002) Acetogeninas y compuestos de Annona lutescens Safford. Tesis (Licenciatura en Ingeniería Química). Instituto Tecnológico de Tuxtla Gutiérrez, Chiapas

    Google Scholar 

  22. De la Cruz-Chacón I, González-Esquinca AR (2013) Activities of enzymes catalyzing benzylisoquinoline alkaloid biosynthesis in Annona diversifolia Saff. during early development. Russ J Plant Phys 60(6):791–799

    Article  Google Scholar 

  23. González-Esquinca AR, De la Cruz-Chacón I, Castro-Moreno M et al (2014) Alkaloids and acetogenins in Annonaceae development: biological considerations. Rev Bras de Frutic 36:01–16

    Article  Google Scholar 

  24. Laguna-Hernández G, Brechú-Franco AE, De la Cruz-Chacón I et al (2015) The histochemical detection of acetogenins and storage molecules in the endosperm of Annona macroprophyllata Donn Sm. seeds. Eur J Histochem 59:2502. doi:10.4081/ejh.2015.2502

  25. Brechú-Franco AE, Laguna-Hernández G, De la Cruz-Chacón I et al (2016) In situ histochemical localisation of alkaloids and acetogenins in the endosperm and embryonic axis of Annona macroprophyllata Donn. Sm. seeds during germination. Eur J Histochem 60: 2568. doi:10.4081/ejh.2016.2568

  26. Ministerio de Agricultura (1976) Reglas internacionales para ensayos de semillas. Instituto Nacional de Semillas y plantas de Vivero. Dirección General de la Producción Agraria. Reimpreso por la SARH, Mexico City

    Google Scholar 

  27. Mata R, Rivero-Cruz JF, Chávez D (2001) Bioactive secondary metabolites from selected mexican medicinal plants: Recent progress. In Tringali C (2001) Bioactive compounds from natural sources Isolation, characterization and biological properties. Taylor & Francis, London

    Google Scholar 

  28. Cepleanu F, Ohtani K, Hamburger M et al (1993) Novel acetogenins from the leaves of Annona purpurea. Helv Chim Acta 76:1379–1388

    Article  CAS  Google Scholar 

  29. Chávez D, Mata R (1998) Purpurediolin and purpurenin, two new cytotoxic adjacent bis-tetrahydrofuran Annonaceous acetogenins from the seeds of Annona purpurea. J Nat Prod 61:580–584

    Article  PubMed  Google Scholar 

  30. Chávez D, Mata R (1999) Purpuracenin: a new cytotoxic adjacent bis-tetrahydrofuran annonaceous acetogenin from the seeds of Annona purpurea. Phytochemistry 50:823–828

    Article  PubMed  Google Scholar 

  31. Rodríguez-López CE, Hernández-Brenes C, De la Garza RID (2015) A targeted metabolomics approach to characterize acetogenin profiles in avocado fruit (Persea americana Mill). RSC Adv 5(128):106019–106029

    Article  Google Scholar 

  32. Ayyad SEN, Al-Footy KO, Alarif WM et al (2011) Bioactive C15 acetogenins from the red alga Laurencia obtusa. Chem Pharm Bull 59(10):1294–1298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Patricia Rivas Manzano and Biol. Carlos Tonatiuh Chavira Ramírez for technical assistance with the cryostat sectioning in the Laboratory of Tissue and Reproductive Biology, Faculty of Sciences, National Autonomous University of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Laguna-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Laguna-Hernández, G., Brechú-Franco, A.E., De la Cruz-Chacón, I., González-Esquinca, A.R. (2017). A Histochemical Technique for the Detection of Annonaceous Acetogenins. In: Pellicciari, C., Biggiogera, M. (eds) Histochemistry of Single Molecules. Methods in Molecular Biology, vol 1560. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6788-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6788-9_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6787-2

  • Online ISBN: 978-1-4939-6788-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics