Skip to main content

Detection of S-Acylated CD95 by Acyl-Biotin Exchange

  • Protocol
  • First Online:
CD95

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1557))

Abstract

S-acylation is the covalent addition of a fatty acid, most generally palmitate onto cysteine residues of proteins through a labile thioester linkage. The death receptor CD95 is S-palmitoylated and this post-translational modification plays a crucial role on CD95 organization in cellular membranes and thus on CD95-mediated signaling. Here, we describe the nonradioactive detection of CD95 S-acylation by acyl-biotin exchange chemistry in which a biotin is substituted for the CD95-linked fatty acid. This sensitive technique, which depends on the ability of hydroxylamine to specifically cleave the thioester linkage between fatty acids and proteins, relies on three chemical steps: (1) blockage of free thiols of non-modified cysteine residues, (2) hydroxylamine-mediated cleavage of thioester-linked fatty acids to restore free thiols and (3) biotinylation of free thiols with a thiol reactive biotinylation agent. Resulting biotinylated proteins can be easily purified by an avidin capture and analyzed by SDS-PAGE and immunoblotting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8(1):74–84

    Article  CAS  PubMed  Google Scholar 

  2. Chamberlain LH, Shipston MJ (2015) The physiology of protein S-acylation. Physiol Rev 95(2):341–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsutsumi R, Fukata Y, Fukata M (2008) Discovery of protein-palmitoylating enzymes. Pflugers Arch 456(6):1199–1206

    Article  CAS  PubMed  Google Scholar 

  4. Greaves J, Chamberlain LH (2011) DHHC palmitoyl transferases: substrate interactions and (patho)physiology. Trends Biochem Sci 36(5):245–253

    Article  CAS  PubMed  Google Scholar 

  5. Drisdel RC, Green WN (2004) Labeling and quantifying sites of protein palmitoylation. Biotechniques 36(2):276–285

    CAS  PubMed  Google Scholar 

  6. Martin BR, Wang C, Adibekian A, Tully SE, Cravatt BF (2012) Global profiling of dynamic protein palmitoylation. Nat Methods 9(1):84–89

    Article  CAS  Google Scholar 

  7. Wan J, Roth AF, Bailey AO, Davis NG (2007) Palmitoylated proteins: purification and identification. Nat Protoc 2(7):1573–1584

    Article  CAS  PubMed  Google Scholar 

  8. Chakrabandhu K et al (2007) Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26(1):209–220

    Article  CAS  PubMed  Google Scholar 

  9. Feig C, Tchikov V, Schütze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26(1):221–231

    Article  CAS  PubMed  Google Scholar 

  10. Guardiola-Serrano F et al (2010) Palmitoylation of human FasL modulates its cell death-inducing function. Cell Death Dis 1:e88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rossin A, Derouet M, Abdel-Sater F, Hueber AO (2009) Palmitoylation of the TRAIL receptor DR4 confers an efficient TRAIL-induced cell death signalling. Biochem J 419(1):185–192, 182 p following 192

    Article  CAS  PubMed  Google Scholar 

  12. Utsumi T et al (2001) Transmembrane TNF (pro-TNF) is palmitoylated. FEBS Lett 500(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  13. Berg V et al (2015) miRs-138 and -424 control palmitoylation-dependent CD95-mediated cell death by targeting acyl protein thioesterases 1 and 2 in CLL. Blood 125(19):2948–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peter ME et al (2007) The CD95 receptor: apoptosis revisited. Cell 129(3):447–450

    Article  CAS  PubMed  Google Scholar 

  15. Rossin A et al (2015) Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability. Cell Death Differ 22(4):643–653

    Article  CAS  PubMed  Google Scholar 

  16. Leon-Bollotte L et al (2011) S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology 140(7):2009–2018, 2018.e2001–2004

    Article  CAS  PubMed  Google Scholar 

  17. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Odile Hueber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rossin, A., Hueber, AO. (2017). Detection of S-Acylated CD95 by Acyl-Biotin Exchange. In: Legembre, P. (eds) CD95. Methods in Molecular Biology, vol 1557. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6780-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6780-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6778-0

  • Online ISBN: 978-1-4939-6780-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics