Skip to main content

Expression and Production of SH2 Domain Proteins

  • Protocol
  • First Online:
SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1555))

Abstract

The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jadwin JA, Ogiue-Ikeda M, Machida K (2012) The application of modular protein domains in proteomics. FEBS Lett 586(17):2586–2596. doi:10.1016/j.febslet.2012.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439(7073):168–174. doi:10.1038/nature04177

    Article  CAS  PubMed  Google Scholar 

  3. Liu BA, Engelmann BW, Jablonowski K, Higginbotham K, Stergachis AB, Nash PD (2012) SRC homology 2 domain binding sites in insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Cell Commun Signal 10(1):27. doi:10.1186/1478-811x-10-27

    Article  PubMed  PubMed Central  Google Scholar 

  4. Machida K, Thompson CM, Dierck K, Jablonowski K, Karkkainen S, Liu B, Zhang H, Nash PD, Newman DK, Nollau P, Pawson T, Renkema GH, Saksela K, Schiller MR, Shin DG, Mayer BJ (2007) High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 26(6):899–915. doi:10.1016/j.molcel.2007.05.031

    Article  CAS  PubMed  Google Scholar 

  5. Takakuma K, Ogo N, Uehara Y, Takahashi S, Miyoshi N, Asai A (2013) Novel multiplexed assay for identifying SH2 domain antagonists of STAT family proteins. PLoS One 8(8), e71646. doi:10.1371/journal.pone.0071646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hause RJ Jr, Leung KK, Barkinge JL, Ciaccio MF, Chuu CP, Jones RB (2012) Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors. PLoS One 7(9), e44471. doi:10.1371/journal.pone.0044471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu H, Li L, Voss C, Wang F, Liu J, Li SS (2015) A comprehensive immunoreceptor phosphotyrosine-based signaling network revealed by reciprocal protein-peptide array screening. Mol Cell Proteomics 14(7):1846–1858. doi:10.1074/mcp.M115.047951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tinti M, Kiemer L, Costa S, Miller ML, Sacco F, Olsen JV, Carducci M, Paoluzi S, Langone F, Workman CT, Blom N, Machida K, Thompson CM, Schutkowski M, Brunak S, Mann M, Mayer BJ, Castagnoli L, Cesareni G (2013) The SH2 domain interaction landscape. Cell Rep 3(4):1293–1305. doi:10.1016/j.celrep.2013.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, Li C, Roy P, Ho K, Songyang Z, Pawson T, Gao Y, Li SS (2008) Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics 7(4):768–784. doi:10.1074/mcp.M700312-MCP200

    Article  CAS  PubMed  Google Scholar 

  10. Jarvis DL (2009) Baculovirus-insect cell expression systems. Methods Enzymol 463:191–222. doi:10.1016/s0076-6879(09)63014-7

    Article  CAS  PubMed  Google Scholar 

  11. Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17(4):373–380. doi:10.1016/j.copbio.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  12. Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5:63. doi:10.3389/fmicb.2014.00063

    PubMed  PubMed Central  Google Scholar 

  13. Harper S, Speicher DW (2008) Expression and purification of GST fusion proteins. Curr Protoc Protein Sci 6:6. doi:10.1002/0471140864.ps0606s52

    PubMed  Google Scholar 

  14. Liu BA, Jablonowski K, Shah EE, Engelmann BW, Jones RB, Nash PD (2010) SH2 domains recognize contextual peptide sequence information to determine selectivity. Mol Cell Proteomics 9(11):2391–2404. doi:10.1074/mcp.M110.001586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lemercier G, Bakalara N, Santarelli X (2003) On-column refolding of an insoluble histidine tag recombinant exopolyphosphatase from Trypanosoma brucei overexpressed in Escherichia coli. J Chromatogr B Analyt Technol Biomed Life Sci 786(1-2):305–309

    Article  CAS  PubMed  Google Scholar 

  16. Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17(4):353–358. doi:10.1016/j.copbio.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  17. Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 22(6):851–868. doi:10.1016/j.molcel.2006.06.001

    Article  PubMed  Google Scholar 

  18. Schafer F, Seip N, Maertens B, Block H, Kubicek J (2015) Purification of GST-tagged proteins. Methods Enzymol 559:127–139. doi:10.1016/bs.mie.2014.11.005

    Article  PubMed  Google Scholar 

  19. Andersen TC, Lindsjo K, Hem CD, Koll L, Kristiansen PE, Skjeldal L, Andreotti AH, Spurkland A (2014) Solubility of recombinant Src homology 2 domains expressed in E. coli can be predicted by TANGO. BMC Biotechnol 14:3. doi:10.1186/1472-6750-14-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mayer BJ, Jackson PK, Van Etten RA, Baltimore D (1992) Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo. Mol Cell Biol 12(2):609–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuriyan J, Cowburn D (1997) Modular peptide recognition domains in eukaryotic signaling. Annu Rev Biophys Biomol Struct 26:259–288. doi:10.1146/annurev.biophys.26.1.259

    Article  CAS  PubMed  Google Scholar 

  22. Peschard P, Ishiyama N, Lin T, Lipkowitz S, Park M (2004) A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J Biol Chem 279(28):29565–29571. doi:10.1074/jbc.M403954200

    Article  CAS  PubMed  Google Scholar 

  23. de Jong R, ten Hoeve J, Heisterkamp N, Groffen J (1995) Crkl is complexed with tyrosine-phosphorylated Cbl in Ph-positive leukemia. J Biol Chem 270(37):21468–21471

    Article  PubMed  Google Scholar 

  24. Wang J, Dai H, Yousaf N, Moussaif M, Deng Y, Boufelliga A, Swamy OR, Leone ME, Riedel H (1999) Grb10, a positive, stimulatory signaling adapter in platelet-derived growth factor BB-, insulin-like growth factor I-, and insulin-mediated mitogenesis. Mol Cell Biol 19(9):6217–6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ambaye ND, Gunzburg MJ, Traore DA, Del Borgo MP, Perlmutter P, Wilce MC, Wilce JA (2014) Preparation of crystals for characterizing the Grb7 SH2 domain before and after complex formation with a bicyclic peptide antagonist. Acta Crystallogr Sect F Struct Biol Commun 70(Pt 2):182–186. doi:10.1107/s2053230x13033414

    Article  CAS  Google Scholar 

  26. Yap MY, Wilce MC, Clayton DJ, Perlmutter P, Aguilar MI, Wilce JA (2010) Preparation and crystallization of the Grb7 SH2 domain in complex with the G7-18NATE nonphosphorylated cyclic inhibitor peptide. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 12):1640–1643. doi:10.1107/s1744309110041850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MC, Wilce JA (2007) Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC Struct Biol 7:58. doi:10.1186/1472-6807-7-58

    Article  PubMed  PubMed Central  Google Scholar 

  28. Prasad N, Topping RS, Decker SJ (2001) SH2-containing inositol 5′-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading. Mol Cell Biol 21(4):1416–1428. doi:10.1128/mcb.21.4.1416-1428.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pesesse X, Moreau C, Drayer AL, Woscholski R, Parker P, Erneux C (1998) The SH2 domain containing inositol 5-phosphatase SHIP2 displays phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate 5-phosphatase activity. FEBS Lett 437(3):301–303

    Article  CAS  PubMed  Google Scholar 

  30. Lupardus PJ, Skiniotis G, Rice AJ, Thomas C, Fischer S, Walz T, Garcia KC (2011) Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Ralpha cytokine receptor complex, and the receptor-Jak1 holocomplex. Structure (Lond 1993) 19(1):45–55. doi:10.1016/j.str.2010.10.010

    Article  CAS  Google Scholar 

  31. Erdmann D, Allard B, Chène P (2008) Kinetic study of human full-length wild-type JAK2 and V617F mutant proteins. Open Enzyme Int J 1:80–84

    Article  CAS  Google Scholar 

  32. Mishra J, Karanki SS, Kumar N (2012) Identification of molecular switch regulating interactions of Janus kinase 3 with cytoskeletal proteins. J Biol Chem 287(49):41386–41391. doi:10.1074/jbc.C112.363507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang LL, Blasioli J, Plas DR, Thomas ML, Yokoyama WM (1999) Specificity of the SH2 domains of SHP-1 in the interaction with the immunoreceptor tyrosine-based inhibitory motif-bearing receptor gp49B. J Immunol 162(3):1318–1323

    CAS  PubMed  Google Scholar 

  34. Cao X, Tanis KQ, Koleske AJ, Colicelli J (2008) Enhancement of ABL kinase catalytic efficiency by a direct binding regulator is independent of other regulatory mechanisms. J Biol Chem 283(46):31401–31407. doi:10.1074/jbc.M804002200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tall GG, Barbieri MA, Stahl PD, Horazdovsky BF (2001) Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev Cell 1(1):73–82

    Article  CAS  PubMed  Google Scholar 

  36. Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H, Katada T (2003) RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. J Cell Sci 116(Pt 20):4159–4168. doi:10.1242/jcs.00718

    Article  CAS  PubMed  Google Scholar 

  37. Naudin C, Sirvent A, Leroy C, Larive R, Simon V, Pannequin J, Bourgaux JF, Pierre J, Robert B, Hollande F, Roche S (2014) SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nat Commun 5:3159. doi:10.1038/ncomms4159

    Article  PubMed  Google Scholar 

  38. Bullock AN, Debreczeni JE, Edwards AM, Sundstrom M, Knapp S (2006) Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proc Natl Acad Sci U S A 103(20):7637–7642. doi:10.1073/pnas.0601638103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Greenhalgh CJ, Rico-Bautista E, Lorentzon M, Thaus AL, Morgan PO, Willson TA, Zervoudakis P, Metcalf D, Street I, Nicola NA, Nash AD, Fabri LJ, Norstedt G, Ohlsson C, Flores-Morales A, Alexander WS, Hilton DJ (2005) SOCS2 negatively regulates growth hormone action in vitro and in vivo. J Clin Invest 115(2):397–406. doi:10.1172/jci22710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kershaw NJ, Murphy JM, Liau NP, Varghese LN, Laktyushin A, Whitlock EL, Lucet IS, Nicola NA, Babon JJ (2013) SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition. Nat Struct Mol Biol 20(4):469–476. doi:10.1038/nsmb.2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Babon JJ, McManus EJ, Yao S, DeSouza DP, Mielke LA, Sprigg NS, Willson TA, Hilton DJ, Nicola NA, Baca M, Nicholson SE, Norton RS (2006) The structure of SOCS3 reveals the basis of the extended SH2 domain function and identifies an unstructured insertion that regulates stability. Mol Cell 22(2):205–216. doi:10.1016/j.molcel.2006.03.024

    Article  CAS  PubMed  Google Scholar 

  42. Linossi EM, Chandrashekaran IR, Kolesnik TB, Murphy JM, Webb AI, Willson TA, Kedzierski L, Bullock AN, Babon JJ, Norton RS, Nicola NA, Nicholson SE (2013) Suppressor of cytokine signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS One 8(8), e70536. doi:10.1371/journal.pone.0070536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li L, Wu C, Huang H, Zhang K, Gan J, Li SS (2008) Prediction of phosphotyrosine signaling networks using a scoring matrix-assisted ligand identification approach. Nucleic Acids Res 36(10):3263–3273. doi:10.1093/nar/gkn161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta S, Yan H, Wong LH, Ralph S, Krolewski J, Schindler C (1996) The SH2 domains of Stat1 and Stat2 mediate multiple interactions in the transduction of IFN-alpha signals. EMBO J 15(5):1075–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Yue P, Fletcher S, Zhao W, Gunning PT, Turkson J (2010) A novel small-molecule disrupts Stat3 SH2 domain-phosphotyrosine interactions and Stat3-dependent tumor processes. Biochem Pharmacol 79(10):1398–1409. doi:10.1016/j.bcp.2010.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haan S, Hemmann U, Hassiepen U, Schaper F, Schneider-Mergener J, Wollmer A, Heinrich PC, Grotzinger J (1999) Characterization and binding specificity of the monomeric STAT3-SH2 domain. J Biol Chem 274(3):1342–1348

    Article  CAS  PubMed  Google Scholar 

  47. Mahajan S, Vassilev A, Sun N, Ozer Z, Mao C, Uckun FM (2001) Transcription factor STAT5A is a substrate of Bruton's tyrosine kinase in B cells. J Biol Chem 276(33):31216–31228. doi:10.1074/jbc.M104874200

    Article  CAS  PubMed  Google Scholar 

  48. Varco-Merth B, Feigerlova E, Shinde U, Rosenfeld RG, Hwa V, Rotwein P (2013) Severe growth deficiency is associated with STAT5b mutations that disrupt protein folding and activity. Mol Endocrinol (Baltimore, MD) 27(1):150–161. doi:10.1210/me.2012-1275

    Article  CAS  Google Scholar 

  49. Dengl S, Mayer A, Sun M, Cramer P (2009) Structure and in vivo requirement of the yeast Spt6 SH2 domain. J Mol Biol 389(1):211–225. doi:10.1016/j.jmb.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  50. Yoh SM, Cho H, Pickle L, Evans RM, Jones KA (2007) The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev 21(2):160–174. doi:10.1101/gad.1503107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maruyama T, Nara K, Yoshikawa H, Suzuki N (2007) Txk, a member of the non-receptor tyrosine kinase of the Tec family, forms a complex with poly(ADP-ribose) polymerase 1 and elongation factor 1alpha and regulates interferon-gamma gene transcription in Th1 cells. Clin Exp Immunol 147(1):164–175. doi:10.1111/j.1365-2249.2006.03249.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wallweber HJ, Tam C, Franke Y, Starovasnik MA, Lupardus PJ (2014) Structural basis of recognition of interferon-alpha receptor by tyrosine kinase 2. Nat Struct Mol Biol 21(5):443–448. doi:10.1038/nsmb.2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Northrop JP, Pustelnik MJ, Lu AT, Grove JR (1996) Characterization of the roles of SH2 domain-containing proteins in T-lymphocyte activation by using dominant negative SH2 domains. Mol Cell Biol 16(5):2255–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Kin Leung, Richard B. Jones, Piers Nash, and Brett Engelmann for sharing their protocols on SH2 domains. We thank Joshua Jadwin for assistance with editing the manuscript, and Bruce Mayer for his continuous encouragement and support. This study was partly supported by grant CA1154966 from the National Institutes of Health and Quest for CURES (QFC) grant from the Leukemia and Lymphoma Society (to K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Machida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, B.A., Ogiue-Ikeda, M., Machida, K. (2017). Expression and Production of SH2 Domain Proteins. In: Machida, K., Liu, B. (eds) SH2 Domains. Methods in Molecular Biology, vol 1555. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6762-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6762-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6760-5

  • Online ISBN: 978-1-4939-6762-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics