Skip to main content

Real-Time Single Molecule Visualization of SH2 Domain Membrane Recruitment in Growth Factor Stimulated Cells

  • Protocol
  • First Online:
SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1555))

  • 1450 Accesses

Abstract

In the last decade, single molecule tracking (SMT) techniques have emerged as a versatile tool for molecular cell biology research. This approach allows researchers to monitor the real-time behavior of individual molecules in living cells with nanometer and millisecond resolution. As a result, it is possible to visualize biological processes as they occur at a molecular level in real time. Here we describe a method for the real-time visualization of SH2 domain membrane recruitment from the cytoplasm to epidermal growth factor (EGF) induced phosphotyrosine sites on the EGF receptor. Further, we describe methods that utilize SMT data to define SH2 domain membrane dynamics parameters such as binding (τ), dissociation (k d), and diffusion (D) rates. Together these methods may allow us to gain greater understanding of signal transduction dynamics and the molecular basis of disease-related aberrant pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225

    Article  CAS  PubMed  Google Scholar 

  2. Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191–203

    Article  CAS  PubMed  Google Scholar 

  3. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176. doi:10.1038/nrm1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nguyen DC, Keller RA, Jett JH, Martin JC (1987) Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence. Anal Chem 59(17):2158–2161. doi:10.1021/ac00144a032

    Article  CAS  PubMed  Google Scholar 

  5. Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62(21):2535–2538. doi:10.1103/PhysRevLett.62.2535

    Article  CAS  PubMed  Google Scholar 

  6. Sako Y, Yanagida T (2003) Single-molecule visualization in cell biology. Nat Rev Mol Cell Biol Suppl:SS1–SS5

    PubMed  Google Scholar 

  7. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  8. Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331(6155):450–453. doi:10.1038/331450a0

    Article  CAS  PubMed  Google Scholar 

  9. Vale RD, Funatsu T, Pierce DW, Romberg L, Harada Y, Yanagida T (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380(6573):451–453. doi:10.1038/380451a0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watanabe N, Mitchison TJ (2002) Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295(5557):1083–1086. doi:10.1126/science.1067470

    Article  CAS  PubMed  Google Scholar 

  11. Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421(6921):423–427. doi:10.1038/nature01405

    Article  PubMed  Google Scholar 

  12. Harry E, Monahan L, Thompson L (2006) Bacterial cell division: the mechanism and its precision. Int Rev Cytol 253:27–94. doi:10.1016/S0074-7696(06)53002-5

    Article  CAS  PubMed  Google Scholar 

  13. Yu J, Xiao J, Ren X, Lao K, Xie XS (2006) Probing gene expression in live cells, one protein molecule at a time. Science 311(5767):1600–1603. doi:10.1126/science.1119623

    Article  CAS  PubMed  Google Scholar 

  14. Gell C, Bormuth V, Brouhard GJ, Cohen DN, Diez S, Friel CT, Helenius J, Nitzsche B, Petzold H, Ribbe J, Schaffer E, Stear JH, Trushko A, Varga V, Widlund PO, Zanic M, Howard J (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245. doi:10.1016/S0091-679X(10)95013-9

    Article  CAS  PubMed  Google Scholar 

  15. Shav-Tal Y, Singer RH, Darzacq X (2004) Imaging gene expression in single living cells. Nat Rev Mol Cell Biol 5(10):855–861. doi:10.1038/nrm1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt CE, Horwitz AF, Lauffenburger DA, Sheetz MP (1993) Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol 123(4):977–991

    Article  CAS  PubMed  Google Scholar 

  17. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378. doi:10.1146/annurev.biophys.34.040204.144637

    Article  CAS  PubMed  Google Scholar 

  18. Anderson CM, Georgiou GN, Morrison IE, Stevenson GV, Cherry RJ (1992) Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci 101(Pt 2):415–425

    PubMed  Google Scholar 

  19. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268. doi:10.1146/annurev.bb.13.060184.001335

    Article  CAS  PubMed  Google Scholar 

  20. Oh D, Yu Y, Lee H, Wanner BL, Ritchie K (2014) Dynamics of the serine chemoreceptor in the Escherichia coli inner membrane: a high-speed single-molecule tracking study. Biophys J 106(1):145–153. doi:10.1016/j.bpj.2013.09.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6(2):131–133. doi:10.1038/nmeth.1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oh D, Ogiue-Ikeda M, Jadwin JA, Machida K, Mayer BJ, Yu J (2012) Fast rebinding increases dwell time of Src homology 2 (SH2)-containing proteins near the plasma membrane. Proc Natl Acad Sci U S A 109(35):14024–14029. doi:10.1073/pnas.1203397109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jadwin JA, Oh D, Curran TG, Ogiue-Ikeda M, Jia L, White FM, Machida K, Yu J, Mayer BJ (2016) Time-resolved multimodal analysis of Src Homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases. Elife 5:e11835. doi:10.7554/eLife.11835

    Article  PubMed  PubMed Central  Google Scholar 

  24. Persson F, Linden M, Unoson C, Elf J (2013) Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat Methods 10(3):265–269. doi:10.1038/nmeth.2367

    Article  PubMed  Google Scholar 

  25. Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95(4):2009–2016. doi:10.1529/biophysj.108.128751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sako Y, Kusumi A (1994) Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J Cell Biol 125(6):1251–1264

    Article  CAS  PubMed  Google Scholar 

  27. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399. doi:10.1146/annurev.biophys.26.1.373

    Article  CAS  PubMed  Google Scholar 

  28. Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72(4):1744–1753. doi:10.1016/s0006-3495(97)78820-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60(4):910–921. doi:10.1016/s0006-3495(91)82125-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grebenkov DS (2011) Probability distribution of the time-averaged mean-square displacement of a Gaussian process. Phys Rev E Stat Nonlin Soft Matter Phys 84(3 Pt 1):031124. doi:10.1103/PhysRevE.84.031124

    Article  PubMed  Google Scholar 

  31. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101(45):15905–15910. doi:10.1073/pnas.0403668101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Ji Yu, Joshua Jadwin, and Mari Ikeda for assistance with editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmyung Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Oh, D. (2017). Real-Time Single Molecule Visualization of SH2 Domain Membrane Recruitment in Growth Factor Stimulated Cells. In: Machida, K., Liu, B. (eds) SH2 Domains. Methods in Molecular Biology, vol 1555. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6762-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6762-9_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6760-5

  • Online ISBN: 978-1-4939-6762-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics