Skip to main content

Rosette Assay: Highly Customizable Dot-Blot for SH2 Domain Screening

  • Protocol
  • First Online:
SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1555))

Abstract

With a growing number of high-throughput studies, structural analyses, and availability of protein-protein interaction databases, it is now possible to apply web-based prediction tools to SH2 domain-interactions. However, in silico prediction is not always reliable and requires experimental validation. Rosette assay is a dot blot-based reverse-phase assay developed for the assessment of binding between SH2 domains and their ligands. It is conveniently customizable, allowing for low- to high-throughput analysis of interactions between various numbers of SH2 domains and their ligands, e.g., short peptides, purified proteins, and cell lysates. The binding assay is performed in a 96-well plate (MBA or MWA apparatus) in which a sample spotted membrane is incubated with up to 96 labeled SH2 domains. Bound domains are detected and quantified using a chemiluminescence or near-infrared fluorescence (IR) imaging system. In this chapter, we describe a practical protocol for rosette assay to assess interactions between synthesized tyrosine phosphorylated peptides and a library of GST-tagged SH2 domains. Since the methodology is not confined to assessment of SH2–pTyr interactions, rosette assay can be broadly utilized for ligand and drug screening using different protein interaction domains or antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187. doi:10.1056/NEJMra044389

    Article  CAS  PubMed  Google Scholar 

  2. O'Shea JJ, Holland SM, Staudt LM (2013) JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 368(2):161–170. doi:10.1056/NEJMra1202117

    Article  PubMed  Google Scholar 

  3. Young RM, Staudt LM (2013) Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 12(3):229–243. doi:10.1038/nrd3937

    Article  CAS  PubMed  Google Scholar 

  4. Kaneko T, Joshi R, Feller SM, Li SS (2012) Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Commun Signal 10(1):32. doi:10.1186/1478-811x-10-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, Li C, Roy P, Ho K, Songyang Z, Pawson T, Gao Y, Li SS (2008) Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics 7(4):768–784. doi:10.1074/mcp.M700312-MCP200

    Article  CAS  PubMed  Google Scholar 

  6. Machida K, Khenkhar M, Nollau P (2012) Deciphering phosphotyrosine-dependent signaling networks in cancer by SH2 profiling. Genes Cancer 3(5–6):353–361. doi:10.1177/1947601912459048

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kundu K, Costa F, Huber M, Reth M, Backofen R (2013) Semi-supervised prediction of SH2-peptide interactions from imbalanced high-throughput data. PLoS One 8(5):e62732. doi:10.1371/journal.pone.0062732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tinti M, Kiemer L, Costa S, Miller ML, Sacco F, Olsen JV, Carducci M, Paoluzi S, Langone F, Workman CT, Blom N, Machida K, Thompson CM, Schutkowski M, Brunak S, Mann M, Mayer BJ, Castagnoli L, Cesareni G (2013) The SH2 domain interaction landscape. Cell Rep 3(4):1293–1305. doi:10.1016/j.celrep.2013.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li L, Zhao B, Du J, Zhang K, Ling CX, Li SS (2011) DomPep--a general method for predicting modular domain-mediated protein-protein interactions. PLoS One 6(10):e25528. doi:10.1371/journal.pone.0025528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31(13):3635–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naegle KM, Gymrek M, Joughin BA, Wagner JP, Welsch RE, Yaffe MB, Lauffenburger DA, White FM (2010) PTMScout, a Web resource for analysis of high throughput post-translational proteomics studies. Mol Cell Proteomics 9(11):2558–2570. doi:10.1074/mcp.M110.001206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ehrenberger T, Cantley LC, Yaffe MB (2015) Computational prediction of protein-protein interactions. Methods Mol Biol (Clifton, NJ) 1278:57–75. doi:10.1007/978-1-4939-2425-7_4

    Article  CAS  Google Scholar 

  13. Machida K, Thompson CM, Dierck K, Jablonowski K, Karkkainen S, Liu B, Zhang H, Nash PD, Newman DK, Nollau P, Pawson T, Renkema GH, Saksela K, Schiller MR, Shin DG, Mayer BJ (2007) High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 26(6):899–915. doi:10.1016/j.molcel.2007.05.031

    Article  CAS  PubMed  Google Scholar 

  14. Machida K, Eschrich S, Li J, Bai Y, Koomen J, Mayer BJ, Haura EB (2010) Characterizing tyrosine phosphorylation signaling in lung cancer using SH2 profiling. PLoS One 5(10):e13470. doi:10.1371/journal.pone.0013470

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ng KY, Yin T, Machida K, Wu YI, Mayer BJ (2015) Phosphorylation of Dok1 by Abl family kinases inhibits CrkI transforming activity. Oncogene 34(20):2650–2659. doi:10.1038/onc.2014.210

    Article  CAS  PubMed  Google Scholar 

  16. Liu BA, Engelmann BW, Jablonowski K, Higginbotham K, Stergachis AB, Nash PD (2012) SRC homology 2 domain binding sites in insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Cell Commun Signal 10(1):27. doi:10.1186/1478-811x-10-27

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaushansky A, Allen JE, Gordus A, Stiffler MA, Karp ES, Chang BH, MacBeath G (2010) Quantifying protein-protein interactions in high throughput using protein domain microarrays. Nat Protoc 5(4):773–790. doi:10.1038/nprot.2010.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Joshua Jadwin for assistance with editing the chapter, and Bruce Mayer for his continuous encouragement and support. This study was partly supported by grant CA1154966 from the National Institutes of Health and Quest for CURES (QFC) grant from the Leukemia and Lymphoma Society (to K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Machida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ng, K.Y., Machida, K. (2017). Rosette Assay: Highly Customizable Dot-Blot for SH2 Domain Screening. In: Machida, K., Liu, B. (eds) SH2 Domains. Methods in Molecular Biology, vol 1555. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6762-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6762-9_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6760-5

  • Online ISBN: 978-1-4939-6762-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics