Advertisement

MicroRNAs in Therapy and Toxicity

  • David J. MacEwanEmail author
  • Niraj M. Shah
  • Daniel J. Antoine
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Identification of clinically important microRNAs (miRNAs) has developed over the last few years, and has become increasingly important in testing the role of miRNAs in healthy and diseased tissue states. Here we discuss the protocols of use in the laboratory for testing such roles of miRNAs in drug therapy and toxicity. Moreover, we describe the protocols necessary in a step-by-step practical guide to identify miRNA species, as well as the in vitro use of miRNA-modulating agents, to test the role of miRNAs in clinically important samples.

Key words

AKI Drug-induced acute kidney injury AML Acute myeloid leukemia ARE Antioxidant response element DILI Drug-induced liver injury HMGB1 High mobility group box-1 KIM-1 Kidney injury molecule 1 miRNAs microRNAs NRF2 Nuclear factor (erythroid-derived 2)-like 2 

References

  1. 1.
    Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3, e215CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217CrossRefPubMedGoogle Scholar
  4. 4.
    Stanczyk J, Ospelt C, Karouzakis E, Filer A, Raza K, Kolling C, Gay R, Buckley CD, Tak PP, Gay S, Kyburz D (2011) Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 63:373–381CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Filkova M, Aradi B, Senolt L, Ospelt C, Vettori S, Mann H, Filer A, Raza K, Buckley CD, Snow M, Vencovsky J, Pavelka K, Michel BA, Gay RE, Gay S, Jungel A (2014) Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann Rheum Dis 73:1898–1904CrossRefPubMedGoogle Scholar
  6. 6.
    Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121:193–205CrossRefPubMedGoogle Scholar
  7. 7.
    Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, Yu D, Pan S (2015) MicroRNA-29c targets beta-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Rep 12:3081–3088PubMedGoogle Scholar
  8. 8.
    Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078CrossRefPubMedGoogle Scholar
  9. 9.
    de Mena L, Coto E, Cardo LF, Diaz M, Blazquez M, Ribacoba R, Salvador C, Pastor P, Samaranch L, Moris G, Menendez M, Corao AI, Alvarez V (2010) Analysis of the micro-RNA-133 and PITX3 genes in Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 153b:234–1239Google Scholar
  10. 10.
    Dohner K, Dohner H (2008) Molecular characterization of acute myeloid leukemia. Haematol-Hematol J 93:976–982CrossRefGoogle Scholar
  11. 11.
    Mi SL, Lu J, Sun M, Li ZJ, Zhang H, Neilly MB, Wang Y, Qian ZJ, Jin J, Zhang YM, Bohlander SK, Le Beau MM, Larson RA, Golub TR, Rowley JD, Chen JJ (2007) MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A 104:19971–19976CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T, Flomenberg N, Marcucci G, Calin GA, Kornblau SM, Kantarjian H, Bloomfield CD, Andreeff M, Croce CM (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111:3183–3189CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schwind S, Maharry K, Radmacher MD, Mrozek K, Holland KB, Margeson D, Whitman SP, Hickey C, Becker H, Metzeler KH, Paschka P, Baldus CD, Liu SJ, Garzon R, Powell BL, Kolitz JE, Carroll AJ, Caligiuri MA, Larson RA, Marcucci G, Bloomfield CD (2010) Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 28:5257–5264CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shah NM, Rushworth SA, Murray MY, Bowles KM, MacEwan DJ (2013) Understanding the role of NRF2-regulated miRNAs in human malignancies. Oncotarget 4:1130–1142CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532:1–12CrossRefPubMedGoogle Scholar
  16. 16.
    O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL, Baltimore D (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD, Behre G, Hiddemann W, Ito Y, Tenen DG (2003) Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 101:2074CrossRefPubMedGoogle Scholar
  18. 18.
    Shaham L, Binder V, Gefen N, Borkhardt A, Izraeli S (2012) MiR-125 in normal and malignant hematopoiesis. Leukemia 26:2011–2018CrossRefPubMedGoogle Scholar
  19. 19.
    Bousquet M, Quelen C, Rosati R, Mansat-De Mas R, La Starza R, Bastard C, Lippert E, Talmant P, Lafage-Pochitaloff M, Leroux D, Gervais C, Viguie F, Lai JL, Terre C, Beverlo B, Sambani C, Hagemeijer A, Marynen P, Delsol G, Dastugue N, Mecucci C, Brousset P (2008) Myeloid cell differentiation arrest by miR-125b-1 in myelodysplasic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 205:2499–2506CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bousquet M, Harris M, Zhou BY, Fleming MD, Lodish H (2010) MicroRNA Mir-125b causes leukemia. Blood 116:1299CrossRefGoogle Scholar
  21. 21.
    Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ (2012) The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappa B and underlies its chemo-resistance. Blood 120:5188–5198CrossRefPubMedGoogle Scholar
  22. 22.
    Shah NM, Zaitseva L, Bowles KM, MacEwan DJ, Rushworth SA (2015) NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival. Cell Death Differ 22:654–664CrossRefPubMedGoogle Scholar
  23. 23.
    Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med 349:474–485CrossRefPubMedGoogle Scholar
  24. 24.
    Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, Lenoir C, Lemoine A, Hillon P (2002) Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology 36:451–455CrossRefPubMedGoogle Scholar
  25. 25.
    Meier Y, Cavallaro M, Roos M, Pauli-Magnus C, Folkers G, Meier PJ, Fattinger K (2005) Incidence of drug-induced liver injury in medical inpatients. Eur J Clin Pharmacol 61:135–143CrossRefPubMedGoogle Scholar
  26. 26.
    Vuppalanchi R, Liangpunsakul S, Chalasani N (2007) Etiology of new-onset jaundice: how often is it caused by idiosyncratic drug-induced liver injury in the United States? Am J Gastroenterol 102:558–562, quiz 693CrossRefPubMedGoogle Scholar
  27. 27.
    Corsini A, Ganey P, Ju C, Kaplowitz N, Pessayre D, Roth R, Watkins PB, Albassam M, Liu B, Stancic S, Suter L, Bortolini M (2012) Current challenges and controversies in drug-induced liver injury. Drug Saf 35:1099–1117CrossRefPubMedGoogle Scholar
  28. 28.
    Moggs J, Moulin P, Pognan F, Brees D, Leonard M, Busch S, Cordier A, Heard DJ, Kammuller M, Merz M, Bouchard P, Chibout SD (2012) Investigative safety science as a competitive advantage for pharma. Expert Opin Drug Metab Toxicol 8:1071–1082CrossRefPubMedGoogle Scholar
  29. 29.
    Antoine DJ, Mercer AE, Williams DP, Park BK (2009) Mechanism-based bioanalysis and biomarkers for hepatic chemical stress. Xenobiotica 39:565–577CrossRefPubMedGoogle Scholar
  30. 30.
    Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67CrossRefPubMedGoogle Scholar
  31. 31.
    Biomarkers Definitions Working G (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  32. 32.
    Ratner M (2005) FDA pharmacogenomics guidance sends clear message to industry. Nat Rev Drug Discov 4:359CrossRefPubMedGoogle Scholar
  33. 33.
    Matheis K, Laurie D, Andriamandroso C, Arber N, Badimon L, Benain X, Bendjama K, Clavier I, Colman P, Firat H, Goepfert J, Hall S, Joos T, Kraus S, Kretschmer A, Merz M, Padro T, Planatscher H, Rossi A, Schneiderhan-Marra N, Schuppe-Koistinen I, Thomann P, Vidal JM, Molac B (2011) A generic operational strategy to qualify translational safety biomarkers. Drug Discov Today 16:600–608CrossRefPubMedGoogle Scholar
  34. 34.
    Watkins PB (2011) Drug safety sciences and the bottleneck in drug development. Clin Pharmacol Ther 89:788–790CrossRefPubMedGoogle Scholar
  35. 35.
    Zen K, Zhang CY (2012) Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32:326–348CrossRefPubMedGoogle Scholar
  36. 36.
    Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106:4402–4407CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang Y, Jia Y, Zheng R, Guo Y, Wang Y, Guo H, Fei M, Sun S (2010) Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem 56:1830–1838CrossRefPubMedGoogle Scholar
  38. 38.
    Harrill AH, Roach J, Fier I, Eaddy JS, Kurtz CL, Antoine DJ, Spencer DM, Kishimoto TK, Pisetsky DS, Park BK, Watkins PB (2012) The effects of heparins on the liver: application of mechanistic serum biomarkers in a randomized study in healthy volunteers. Clin Pharmacol Ther 92:214–220CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Antoine DJ, Dear JW, Lewis PS, Platt V, Coyle J, Masson M, Thanacoody RH, Gray AJ, Webb DJ, Moggs JG, Bateman DN, Goldring CE, Park BK (2013) Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology 58:777–787Google Scholar
  40. 40.
    Dear JW, Antoine DJ, Starkey-Lewis P, Goldring CE, Park BK (2013) Letter to the editor: early detection of paracetamol toxicity using circulating liver microRNA and markers of cell necrosis. Br J Clin Pharmacol. doi:  10.1111/bcp.12214
  41. 41.
    Thulin P, Nordahl G, Gry M, Yimer G, Aklillu E, Makonnen E, Aderaye G, Lindquist L, Mattsson CM, Ekblom B, Antoine DJ, Park BK, Linder S, Harrill AH, Watkins PB, Glinghammar B, Schuppe-Koistinen I (2014) Keratin-18 and microRNA-122 complement alanine aminotransferase as novel safety biomarkers for drug-induced liver injury in two human cohorts. Liver Int. 34:367–378Google Scholar
  42. 42.
    Starkey Lewis PJ, Dear J, Platt V, Simpson KJ, Craig DG, Antoine DJ, French NS, Dhaun N, Webb DJ, Costello EM, Neoptolemos JP, Moggs J, Goldring CE, Park BK (2011) Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54:1767–1776CrossRefPubMedGoogle Scholar
  43. 43.
    Holman NS, Mosedale M, Wolf KK, LeCluyse EL, Watkins PB (2016) Subtoxic alterations in hepatocyte-derived exosomes: an early step in drug-induced liver injury? Toxicol Sci 151:365–375CrossRefPubMedGoogle Scholar
  44. 44.
    Yang D, Yuan Q, Balakrishnan A, Bantel H, Klusmann JH, Manns MP, Ott M, Cantz T, Sharma AD (2016) MicroRNA-125b-5p mimic inhibits acute liver failure. Nat Commun 7:11916CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Vliegenthart AD, Starkey Lewis P, Tucker CS, Del Pozo J, Rider S, Antoine DJ, Dubost V, Westphal M, Moulin P, Bailey MA, Moggs JG, Goldring CE, Park BK, Dear JW (2014) Retro-orbital blood acquisition facilitates circulating microRNA measurement in zebrafish with paracetamol hepatotoxicity. Zebrafish 11:219–226Google Scholar
  46. 46.
    Sharkey JW, Antoine DJ, Park BK (2012) Validation of the isolation and quantification of kidney enriched miRNAs for use as biomarkers. Biomarkers 17:231–239CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • David J. MacEwan
    • 1
    Email author
  • Niraj M. Shah
    • 1
  • Daniel J. Antoine
    • 1
  1. 1.Department of Molecular and Clinical Pharmacology, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK

Personalised recommendations