Skip to main content

Markerless Genome Editing in Competent Streptococci

  • Protocol
  • First Online:
Oral Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1537))

Abstract

Selective markers employed in classical mutagenesis methods using natural genetic transformation can affect gene expression, risk phenotypic effects, and accumulate as unwanted genes during successive mutagenesis cycles. In this chapter, we present a protocol for markerless genome editing in Streptococcus mutans and Streptococcus pneumoniae achieved with an efficient method for natural transformation. High yields of transformants are obtained by combining the unimodal state of competence developed after treatment of S. mutans with sigX-inducing peptide pheromone (XIP) in a chemically defined medium (CDM) or of S. pneumoniae with the competence-stimulating peptide (CSP) together with use of a donor amplicon carrying extensive flanking homology. This combination ensures efficient and precise integration of a new allele by the recombination machinery present in competent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan R, Rukke HV, Ricomini AP, Fimland G, Arntzen MO, Thiede B, Petersen FC (2012) Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J Bacteriol 194:3781–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mashburn-Warren L, Morrison DA, Federle MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reck M, Tomasch J, Wagner-Dobler I (2015) The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet 11, e1005353

    Article  PubMed  PubMed Central  Google Scholar 

  4. Son M, Ghoreishi D, Ahn SJ, Burne RA, Hagen SJ (2015) Sharply tuned pH response of genetic competence regulation in Streptococcus mutans: a microfluidic study of the environmental sensitivity of comX. Appl Environ Microbiol 81:5622–5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Son MJ, Ahn SJ, Guo Q, Burne RA, Hagen SJ (2012) Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX. Mol Microbiol 86:258–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang JC, LaSarre B, Jimenez JC, Aggarwal C, Federle MJ (2011) Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathog 7, e1002190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Desai K, Mashburn-Warren L, Federle MJ, Morrison DA (2012) Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J Bacteriol 194:3774–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnston C, Campo N, Berge MJ, Polard P, Claverys JP (2014) Streptococcus pneumoniae, le transformiste. Trends Microbiol 22:113–119

    Article  CAS  PubMed  Google Scholar 

  9. Cato A Jr, Guild WR (1968) Transformation and DNA size: I. Activity of fragments of defined size and a fit to a random double cross-over model. J Mol Biol 37:157–178

    Article  CAS  PubMed  Google Scholar 

  10. Morrison DA, Guild WR (1972) Transformation and deoxyribonucleic acid size: extent of degradation on entry varies with size of donor. J Bacteriol 112:1157–1168

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Morrison DA, Khan R, Junges R, Amdal HA, Petersen FC (2015) Genome editing by natural genetic transformation in Streptococcus mutans. J Microbiol Methods 119:134–141

    Article  CAS  PubMed  Google Scholar 

  12. Tovpeko Y, Morrison DA (2014) Competence for genetic transformation in Streptococcus pneumoniae: mutations in sigmaA bypass the comW requirement. J Bacteriol 196:3724–3734

    Article  PubMed  PubMed Central  Google Scholar 

  13. Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, Osmani SA, Oakley BR (2006) Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1:3111–3120

    Article  CAS  PubMed  Google Scholar 

  14. Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE (2005) Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33:1141–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3:1452–1456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation, grant no. MCB-1020863, by the Faculty of Dentistry, University of Oslo, and by the Norwegian surveillance system for antibiotic resistance in microbes (Norsk overvåkingssystem for antibiotikaresistens hos mikrober—NORM). We thank Kunal Desai for assistance with exploratory experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Morrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Junges, R., Khan, R., Tovpeko, Y., Ã…mdal, H.A., Petersen, F.C., Morrison, D.A. (2017). Markerless Genome Editing in Competent Streptococci. In: Seymour, G., Cullinan, M., Heng, N. (eds) Oral Biology. Methods in Molecular Biology, vol 1537. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6685-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6685-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6683-7

  • Online ISBN: 978-1-4939-6685-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics