Advertisement

Oral Biology pp 233-247 | Cite as

Markerless Genome Editing in Competent Streptococci

  • Roger Junges
  • Rabia Khan
  • Yanina Tovpeko
  • Heidi A. Åmdal
  • Fernanda C. Petersen
  • Donald A. MorrisonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1537)

Abstract

Selective markers employed in classical mutagenesis methods using natural genetic transformation can affect gene expression, risk phenotypic effects, and accumulate as unwanted genes during successive mutagenesis cycles. In this chapter, we present a protocol for markerless genome editing in Streptococcus mutans and Streptococcus pneumoniae achieved with an efficient method for natural transformation. High yields of transformants are obtained by combining the unimodal state of competence developed after treatment of S. mutans with sigX-inducing peptide pheromone (XIP) in a chemically defined medium (CDM) or of S. pneumoniae with the competence-stimulating peptide (CSP) together with use of a donor amplicon carrying extensive flanking homology. This combination ensures efficient and precise integration of a new allele by the recombination machinery present in competent cells.

Key words

Pheromone Competence Natural transformation Markerless mutagenesis Streptococcus mutans Streptococcus pneumoniae Streptococcus XIP CSP 

Notes

Acknowledgments

This work was partially supported by the National Science Foundation, grant no. MCB-1020863, by the Faculty of Dentistry, University of Oslo, and by the Norwegian surveillance system for antibiotic resistance in microbes (Norsk overvåkingssystem for antibiotikaresistens hos mikrober—NORM). We thank Kunal Desai for assistance with exploratory experiments.

References

  1. 1.
    Khan R, Rukke HV, Ricomini AP, Fimland G, Arntzen MO, Thiede B, Petersen FC (2012) Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J Bacteriol 194:3781–3788CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mashburn-Warren L, Morrison DA, Federle MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Reck M, Tomasch J, Wagner-Dobler I (2015) The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet 11, e1005353CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Son M, Ghoreishi D, Ahn SJ, Burne RA, Hagen SJ (2015) Sharply tuned pH response of genetic competence regulation in Streptococcus mutans: a microfluidic study of the environmental sensitivity of comX. Appl Environ Microbiol 81:5622–5631CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Son MJ, Ahn SJ, Guo Q, Burne RA, Hagen SJ (2012) Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX. Mol Microbiol 86:258–272CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chang JC, LaSarre B, Jimenez JC, Aggarwal C, Federle MJ (2011) Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathog 7, e1002190CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Desai K, Mashburn-Warren L, Federle MJ, Morrison DA (2012) Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J Bacteriol 194:3774–3780CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Johnston C, Campo N, Berge MJ, Polard P, Claverys JP (2014) Streptococcus pneumoniae, le transformiste. Trends Microbiol 22:113–119CrossRefPubMedGoogle Scholar
  9. 9.
    Cato A Jr, Guild WR (1968) Transformation and DNA size: I. Activity of fragments of defined size and a fit to a random double cross-over model. J Mol Biol 37:157–178CrossRefPubMedGoogle Scholar
  10. 10.
    Morrison DA, Guild WR (1972) Transformation and deoxyribonucleic acid size: extent of degradation on entry varies with size of donor. J Bacteriol 112:1157–1168PubMedPubMedCentralGoogle Scholar
  11. 11.
    Morrison DA, Khan R, Junges R, Amdal HA, Petersen FC (2015) Genome editing by natural genetic transformation in Streptococcus mutans. J Microbiol Methods 119:134–141CrossRefPubMedGoogle Scholar
  12. 12.
    Tovpeko Y, Morrison DA (2014) Competence for genetic transformation in Streptococcus pneumoniae: mutations in sigmaA bypass the comW requirement. J Bacteriol 196:3724–3734CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, Osmani SA, Oakley BR (2006) Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1:3111–3120CrossRefPubMedGoogle Scholar
  14. 14.
    Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE (2005) Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33:1141–1153CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3:1452–1456CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Roger Junges
    • 1
  • Rabia Khan
    • 1
  • Yanina Tovpeko
    • 2
  • Heidi A. Åmdal
    • 1
  • Fernanda C. Petersen
    • 1
  • Donald A. Morrison
    • 2
    Email author
  1. 1.Department of Oral Biology, Faculty of DentistryUniversity of OsloOsloNorway
  2. 2.Department of Biological Sciences, College of Liberal Arts and SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations