Skip to main content

Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomic Data

  • Protocol
  • First Online:
Plant Genomics Databases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1533))

Abstract

Ensembl Plants (http://plants.ensembl.org) is an integrative resource presenting genome-scale information for 39 sequenced plant species. Available data includes genome sequence, gene models, functional annotation, and polymorphic loci; for the latter, additional information including population structure, individual genotypes, linkage, and phenotype data is available for some species. Comparative data is also available, including genomic alignments and “gene trees,” which show the inferred evolutionary history of each gene family represented in the resource. Access to the data is provided through a genome browser, which incorporates many specialist interfaces for different data types, through a variety of programmatic interfaces, and via a specialist data mining tool supporting rapid filtering and retrieval of bulk data. Genomic data from many non-plant species, including those of plant pathogens, pests, and pollinators, is also available via the same interfaces through other divisions of Ensembl.

Ensembl Plants is updated 4–6 times a year and is developed in collaboration with our international partners in the Gramene (http://www.gramene.org) and transPLANT projects (http://www.transplantdb.eu).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribaut J-M, Jean-Marcel R, David H (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239

    Article  Google Scholar 

  2. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  CAS  PubMed  Google Scholar 

  3. Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  4. Kleinhofs A, Behki R (1977) Prospects for plant genome modification by nonconventional methods. Annu Rev Genet 11:79–101

    Article  CAS  PubMed  Google Scholar 

  5. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742–752

    Article  CAS  PubMed  Google Scholar 

  6. Wikipedia contributors (2016) List of sequenced plant genomes. In: Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=List_of_sequenced_plant_genomes&oldid=698860006. Accessed on 31 Jan 2016

    Google Scholar 

  7. Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol Biol 1374:115–140

    Article  PubMed  Google Scholar 

  8. Tello-Ruiz MK, Stein J, Wei S et al (2016) Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Res 44:D1133–D1140

    Article  PubMed  Google Scholar 

  9. Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  10. Faostat Team (2011) FAOSTAT. http://faostat.fao.org. Accessed on 31 Jan 2016

  11. Yates A, Akanni W, Amode MR et al (2016) Ensembl 2016. Nucleic Acids Res 44:D710–D716

    Article  PubMed  Google Scholar 

  12. Kersey PJ, Allen JE, Christensen M et al (2014) Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42:D546–D552

    Article  CAS  PubMed  Google Scholar 

  13. Kersey PJ, Allen JE, Armean I et al (2016) Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–D580

    Article  PubMed  Google Scholar 

  14. Monaco MK, Stein J, Naithani S et al (2014) Gramene 2013: comparative plant genomics resources. Nucleic Acids Res 42:D1193–D1199

    Article  CAS  PubMed  Google Scholar 

  15. Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011:bar049

    Article  Google Scholar 

  16. Jones P, Binns D, Chang H-Y et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC (2016) SIFT missense predictions for genomes. Nat Protoc 11:1–9

    Article  CAS  PubMed  Google Scholar 

  18. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F (2010) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26:2069–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W (2003) Human–mouse alignments with BLASTZ. Genome Res 13:103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harris RS (2007) Improved pairwise alignment of genomic DNA. ProQuest

    Google Scholar 

  21. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Istrail S, Sutton GG, Florea L et al (2004) Whole-genome shotgun assembly and comparison of human genome assemblies. Proc Natl Acad Sci U S A 101:1916–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D (2003) Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A 100:11484–11489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E (2009) EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19:327–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R (2009) QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25:3045–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cooper L, Walls RL, Elser J et al (2013) The plant ontology as a tool for comparative plant anatomy and genomic analyses. Plant Cell Physiol 54:e1

    Article  CAS  PubMed  Google Scholar 

  28. Wootton JC, Federhen S (1993) Statistics of local complexity in amino acid sequences and sequence databases. Comput Chem 17:149–163

    Article  CAS  Google Scholar 

  29. Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, Ashburner M (2005) The sequence ontology: a tool for the unification of genome annotations. Genome Biol 6:R44

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chamala S, Chanderbali AS, Der JP et al (2013) Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science 342:1516–1517

    Article  CAS  PubMed  Google Scholar 

  31. Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed  PubMed Central  Google Scholar 

  32. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  33. Liu S, Liu Y, Yang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  35. Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matsuzaki M, Misumi O, Shin-I T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  37. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  38. International Barley Genome Sequencing Consortium, Mayer KFX, Waugh R et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  39. Wing RA, Ammiraju JSS, Luo M et al (2005) The oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 59:53–62

    Article  CAS  PubMed  Google Scholar 

  40. Young ND, Debellé F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D’Hont A, Denoeud F, Aury J-M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  PubMed  Google Scholar 

  42. Chen J, Huang Q, Gao D et al (2013) Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4:1595

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang M, Yu Y, Haberer G et al (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Zhang S, Liu H et al (2015) Genome and comparative transcriptomics of African Wild Rice Oryza longistaminata provide insights into molecular mechanism of rhizomatousness and self-incompatibility. Mol Plant 8:1683–1686

    Article  CAS  PubMed  Google Scholar 

  45. Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  46. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  47. Palenik B, Grimwood J, Aerts A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104:7705–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  49. Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  50. The International Peach Genome Initiative, Verde I, Abbott AG et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  Google Scholar 

  51. Banks JA, Nishiyama T, Hasebe M et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Article  CAS  PubMed  Google Scholar 

  53. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  54. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  55. Potato Genome Sequencing Consortium, Xu X, Pan S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  56. Argout X, Salse J, Aury J-M et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108

    Article  CAS  PubMed  Google Scholar 

  57. International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  58. Ling H-Q, Zhao S, Liu D et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  59. Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  60. Jaillon O, Aury J-M, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  61. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  62. Bao W, Kojima KK, Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC, Sharma S, Gundlach H, Spannagl M (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41:D1144–D1151

    Article  CAS  PubMed  Google Scholar 

  64. Morgulis A, Gertz EM, Schäffer AA, Agarwala R (2006) A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J Comput Biol 13:1028–1040

    Article  CAS  PubMed  Google Scholar 

  65. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Clark RM, Schweikert G, Toomajian C et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–342

    Article  CAS  PubMed  Google Scholar 

  67. Atwell S, Huang YS, Vilhjálmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fox SE, Preece J, Kimbrel JA, Marchini GL, Sage A, Youens-Clark K, Cruzan MB, Jaiswal P (2013) Sequencing and de novo transcriptome assembly of Brachypodium sylvaticum (Poaceae). Appl Plant Sci. doi: 10.3732/apps.1200011

    Google Scholar 

  69. Mascher M, Muehlbauer GJ, Rokhsar DS et al (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Comadran J, Kilian B, Russell J et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  CAS  PubMed  Google Scholar 

  71. Yu J, Wang J, Lin W et al (2005) The Genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhao K, Wright M, Kimball J et al (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5:e10780

    Article  PubMed  PubMed Central  Google Scholar 

  73. McNally KL, Childs KL, Bohnert R et al (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A 106:12273–12278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 100 Tomato Genome Sequencing Consortium, Aflitos S, Schijlen E et al (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148

    Article  Google Scholar 

  75. Morris GP, Ramu P, Deshpande SP et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458

    Article  CAS  PubMed  Google Scholar 

  76. Mace ES, Tai S, Gilding EK et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320. doi:10.1038/ncomms3320

    PubMed  PubMed Central  Google Scholar 

  77. Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zheng L-Y, Guo X-S, He B et al (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wilkinson PA, Winfield MO, Barker GLA, Allen AM, Burridge A, Coghill JA, Edwards KJ (2012) CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinformatics 13:219

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jordan KW, Wang S, Lun Y et al (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16:48

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bolser DM, Kerhornou A, Walts B, Kersey P (2015) Triticeae resources in Ensembl Plants. Plant Cell Physiol 56:e3

    Article  PubMed  Google Scholar 

  82. Myles S, Chia J-M, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D (2010) Rapid genomic characterization of the genus vitis. PLoS One 5:e8219

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chia J-M, Song C, Bradbury PJ et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan M. Bolser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bolser, D.M., Staines, D.M., Perry, E., Kersey, P.J. (2017). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomic Data. In: van Dijk, A. (eds) Plant Genomics Databases. Methods in Molecular Biology, vol 1533. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6658-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6658-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6656-1

  • Online ISBN: 978-1-4939-6658-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics