Skip to main content

Analysis of Viral and Cellular MicroRNAs in EBV-Infected Cells

  • Protocol
  • First Online:
Epstein Barr Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1532))

Abstract

MicroRNAs are small, noncoding RNAs that posttranscriptionally regulate gene expression. The discovery of this relatively new mode of gene regulation as well as studies showing the prognostic value of viral and cellular miRNAs as biomarkers, such as in cancer progression, has stimulated the development of many methods to characterize miRNAs. EBV encodes 25 viral precursor microRNAs within its genome that are expressed during lytic and latent infection. In addition to viral miRNAs, EBV infection induces the expression of specific cellular oncogenic miRNAs, such as miR-155, miR-146a, miR-21, and others, that can contribute to the persistence of latently infected cells. This chapter describes several current techniques used to identify and detect the expression of viral and cellular miRNAs in EBV-infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cameron JE, Fewell C, Yin Q et al (2008) Epstein-Barr virus growth/latency III program alters cellular microRNA expression. Virology 382:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cameron JE, Yin Q, Fewell C et al (2008) Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 82:1946–1958

    Article  CAS  PubMed  Google Scholar 

  3. Jiang J, Lee EJ, Schmittgen TD (2006) Increased expression of microRNA-155 in Epstein-Barr virus transformed lymphoblastoid cell lines. Genes Chromosomes Cancer 45:103–106

    Article  CAS  PubMed  Google Scholar 

  4. Marquitz AR, Mathur A, Chugh PE et al (2014) Expression profile of microRNAs in Epstein-Barr virus-infected AGS gastric carcinoma cells. J Virol 88:1389–1393

    Article  PubMed  PubMed Central  Google Scholar 

  5. Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forte E, Luftig MA (2011) The role of microRNAs in Epstein-Barr virus latency and lytic reactivation. Microbes Infect 13:1156–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mrazek J, Kreutmayer SB, Grasser FA et al (2007) Subtractive hybridization identifies novel differentially expressed ncRNA species in EBV-infected human B cells. Nucleic Acids Res 35:e73

    Article  PubMed  PubMed Central  Google Scholar 

  8. Linnstaedt SD, Gottwein E, Skalsky RL et al (2010) Virally induced cellular miR-155 plays a key role in B-cell immortalization by EBV. J Virol 84:11670–11678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Navarro A, Gaya A, Martinez A et al (2008) MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111:2825–2832

    Article  CAS  PubMed  Google Scholar 

  10. Leucci E, Onnis A, Cocco M et al (2010) B-cell differentiation in EBV-positive Burkitt lymphoma is impaired at posttranscriptional level by miRNA-altered expression. Int J Cancer 126:1316–1326

    CAS  PubMed  Google Scholar 

  11. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  CAS  PubMed  Google Scholar 

  12. Zhang G, Zong J, Lin S et al (2015) Circulating Epstein-Barr virus microRNAs miR-BART7 and miR-BART13 as biomarkers for nasopharyngeal carcinoma diagnosis and treatment. Int J Cancer 136:E301–E312

    Article  CAS  PubMed  Google Scholar 

  13. Pfeffer S, Zavolan M, Grasser FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  CAS  PubMed  Google Scholar 

  14. Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai X, Schafer A, Lu S et al (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen SJ, Chen GH, Chen YH et al (2010) Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. PLoS One 5:e12745

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhu JY, Pfuhl T, Motsch N et al (2009) Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol 83:3333–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  19. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  21. Skalsky RL, Corcoran DL, Gottwein E et al (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8:e1002484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Skalsky RL, Kang D, Linnstaedt SD et al (2014) Evolutionary conservation of primate lymphocryptovirus microRNA targets. J Virol 88:1617–1635

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gottwein E, Corcoran DL, Mukherjee N et al (2011) Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10:515–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gottwein E, Cullen BR (2007) Protocols for expression and functional analysis of viral microRNAs. Methods Enzymol 427:229–243

    Article  CAS  PubMed  Google Scholar 

  25. Dolken L, Malterer G, Erhard F et al (2010) Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 7:324–334

    Article  PubMed  Google Scholar 

  26. Riley KJ, Rabinowitz GS, Yario TA et al (2012) EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31:2207–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang D, Skalsky RL, Cullen BR (2015) EBV BART MicroRNAs target multiple pro-apoptotic cellular genes to promote epithelial cell survival. PLoS Pathog 11:e1004979

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hafner M, Landthaler M, Burger L, et al. (2010) PAR-CliP-a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp 41: pii: 2034

    Google Scholar 

  29. Flores O, Kennedy EM, Skalsky RL et al (2014) Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res 42:4629–4639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hook LM, Landais I, Hancock MH et al (2014) Techniques for characterizing cytomegalovirus-encoded miRNAs. Methods Mol Biol 1119:239–265

    Article  CAS  PubMed  Google Scholar 

  31. Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1:302–307

    Article  CAS  PubMed  Google Scholar 

  32. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  33. Friedlander MR, Mackowiak SD, Li N et al (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52

    Article  PubMed  Google Scholar 

  34. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  35. Anders S, McCarthy DJ, Chen Y et al (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 8:1765–1786

    Article  PubMed  Google Scholar 

  36. Manzano M, Forte E, Raja AN et al (2015) Divergent target recognition by coexpressed 5′-isomiRs of miR-142-3p and selective viral mimicry. RNA 21:1606–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manzano M, Shamulailatpam P, Raja AN et al (2013) Kaposi’s sarcoma-associated herpesvirus encodes a mimic of cellular miR-23. J Virol 87:11821–11830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Motsch N, Alles J, Imig J et al (2012) MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One 7:e42193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feederle R, Haar J, Bernhardt K et al (2011) The members of an Epstein-Barr virus microRNA cluster cooperate to transform B lymphocytes. J Virol 85:9801–9810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feederle R, Linnstaedt SD, Bannert H et al (2011) A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 7:e1001294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

R.L.S. is supported by NIH grant K99-CA175181. The author thanks the current and former members of Dr. Bryan Cullen’s laboratory at Duke University, the members of Dr. Jack Keene’s lab at Duke University, and the members of Dr. Jay Nelson’s laboratory at Oregon Health and Science University for the discussions, troubleshooting, and optimizing protocols over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca L. Skalsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Skalsky, R.L. (2017). Analysis of Viral and Cellular MicroRNAs in EBV-Infected Cells. In: Minarovits, J., Niller, H. (eds) Epstein Barr Virus. Methods in Molecular Biology, vol 1532. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6655-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6655-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6653-0

  • Online ISBN: 978-1-4939-6655-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics