Skip to main content

Phagocytosis: Hungry, Hungry Cells

  • Protocol
  • First Online:
Phagocytosis and Phagosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1519))

Abstract

Phagocytosis is the cellular internalization and sequestration of particulate matter into a `phagosome, which then matures into a phagolysosome. The phagolysosome then offers a specialized acidic and hydrolytic milieu that ultimately degrades the engulfed particle. In multicellular organisms, phagocytosis and phagosome maturation play two key physiological roles. First, phagocytic cells have an important function in tissue remodeling and homeostasis by eliminating apoptotic bodies, senescent cells and cell fragments. Second, phagocytosis is a critical weapon of the immune system, whereby cells like macrophages and neutrophils hunt and engulf a variety of pathogens and foreign particles. Not surprisingly, pathogens have evolved mechanisms to either block or alter phagocytosis and phagosome maturation, ultimately usurping the cellular machinery for their own survival. Here, we review past and recent discoveries that highlight how phagocytes recognize target particles, key signals that emanate after phagocyte-particle engagement, and how these signals help modulate actin-dependent remodeling of the plasma membrane that culminates in the release of the phagosome. We then explore processes related to early and late stages of phagosome maturation, which requires fusion with endosomes and lysosomes. We end this review by acknowledging that little is known about phagosome fission and even less is known about how phagosomes are resolved after particle digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16:907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flannagan RS, Jaumouillé V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98

    Article  CAS  PubMed  Google Scholar 

  3. Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112:935–945

    Article  CAS  PubMed  Google Scholar 

  4. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14:986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomez Perdiguero E, Klapproth K, Schulz C et al (2014) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551

    Article  PubMed  CAS  Google Scholar 

  6. Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197

    Article  CAS  PubMed  Google Scholar 

  7. Jaumouillé V, Farkash Y, Jaqaman K et al (2014) Actin cytoskeleton reorganization by Syk regulates Fcγ receptor responsiveness by increasing its lateral mobility and clustering. Dev Cell 29:534–546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Monks J, Rosner D, Jon Geske F et al (2005) Epithelial cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. Cell Death Differ 12:107–114

    Article  CAS  PubMed  Google Scholar 

  9. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974

    Article  CAS  PubMed  Google Scholar 

  10. Flannagan RS, Harrison RE, Yip CM et al (2010) Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol 191:1205–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stuart LM, Ezekowitz RAB (2005) Phagocytosis: elegant complexity. Immunity 22:539–550

    Article  CAS  PubMed  Google Scholar 

  12. Freeman SA, Grinstein S (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262:193–215

    Article  CAS  PubMed  Google Scholar 

  13. Gregory CD (2000) CD14-dependent clearance of apoptotic cells: relevance to the immune system. Curr Opin Immunol 12:27–34

    Article  CAS  PubMed  Google Scholar 

  14. Arur S, Uche UE, Rezaul K et al (2003) Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 4:587–598

    Article  CAS  PubMed  Google Scholar 

  15. Moffatt OD, Devitt A A, Bell ED et al (1999) Macrophage recognition of ICAM-3 on apoptotic leukocytes. J Immunol 162:6800–6810

    CAS  PubMed  Google Scholar 

  16. Torr EE, Gardner DH, Thomas L et al (2012) Apoptotic cell-derived ICAM-3 promotes both macrophage chemoattraction to and tethering of apoptotic cells. Cell Death Differ 19:671–679

    Article  CAS  PubMed  Google Scholar 

  17. Vandivier RW, Ogden CA, Fadok VA et al (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169:3978–3986

    Article  CAS  PubMed  Google Scholar 

  18. Fadok VA, Voelker DR, Campbell PA et al (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  19. Ezekowitz RA, Sastry K, Bailly P, Warner A (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172:1785–1794

    Article  CAS  PubMed  Google Scholar 

  20. Ezekowitz RA, Williams DJ, Koziel H et al (1991) Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature 351:155–158

    Article  CAS  PubMed  Google Scholar 

  21. Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE (2016) The critical role of toll-like receptors—from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev 15:1–8

    Article  PubMed  CAS  Google Scholar 

  22. Pfeiffer A, Bttcher A, Ors E et al (2001) Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31:3153–3164

    Article  CAS  PubMed  Google Scholar 

  23. Groves E, Dart AE, Covarelli V, Caron E (2008) Molecular mechanisms of phagocytic uptake in mammalian cells. Cell Mol Life Sci 65:1957–1976

    Article  CAS  PubMed  Google Scholar 

  24. Murphy K, Travers P, Walport M (2008) Janeway’s immunobiology. Garland Science, New York

    Google Scholar 

  25. Suzuki T, Kono H, Hirose N et al (2000) Differential involvement of Src family kinases in Fc gamma receptor-mediated phagocytosis. J Immunol 165:473–482

    Article  CAS  PubMed  Google Scholar 

  26. Underhill DM, Goodridge HS (2007) The many faces of ITAMs. Trends Immunol 28:66–73

    Article  CAS  PubMed  Google Scholar 

  27. Freeman SA, Goyette J, Furuya W et al (2016) Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164:128–140

    Article  CAS  PubMed  Google Scholar 

  28. Park H, Cox D (2011) Syk regulates multiple signaling pathways leading to CX3CL1 chemotaxis in macrophages. J Biol Chem 286:14762–14769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tomasevic N, Jia Z, Russell A et al (2007) Differential regulation of WASP and N-WASP by Cdc42, Rac1, Nck, and PI(4,5)P2. Biochemistry 46:3494–3502

    Article  CAS  PubMed  Google Scholar 

  30. Pollard T (2002) Structure and function of the Arp2/3 complex. Curr Opin Struct Biol 12:768–774

    Article  CAS  PubMed  Google Scholar 

  31. Dart AE, Donnelly SK, Holden DW et al (2012) Nck and Cdc42 co-operate to recruit N-WASP to promote Fc R-mediated phagocytosis. J Cell Sci 125:2825–2830

    Article  CAS  PubMed  Google Scholar 

  32. Humphries AC, Donnelly SK, Way M (2014) Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J Cell Sci 127:673–685

    Article  CAS  PubMed  Google Scholar 

  33. Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413:36–37

    Article  CAS  PubMed  Google Scholar 

  34. Rogers NC, Slack EC, Edwards AD et al (2005) Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517

    Article  CAS  PubMed  Google Scholar 

  35. Goodridge HS, Reyes CN, Becker CA et al (2011) Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”. Nature 472:471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herre J, Marshall ASJ, Caron E et al (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045

    Article  CAS  PubMed  Google Scholar 

  37. Shah VB, Ozment-Skelton TR, Williams DL, Keshvara L (2009) Vav1 and PI3K are required for phagocytosis of beta-glucan and subsequent superoxide generation by microglia. Mol Immunol 46:1845–1853

    Article  CAS  PubMed  Google Scholar 

  38. Côté J-F, Vuori K (2002) Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci 115:4901–4913

    Article  PubMed  CAS  Google Scholar 

  39. Akakura S, Singh S, Spataro M et al (2004) The opsonin MFG-E8 is a ligand for the αvβ5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res 292:403–416

    Article  CAS  PubMed  Google Scholar 

  40. Albert ML, Kim JI, Birge RB (2000) alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2:899–905

    Article  CAS  PubMed  Google Scholar 

  41. Park D, Tosello-Trampont A-C, Elliott MR et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434

    Article  CAS  PubMed  Google Scholar 

  42. Wu Y, Singh S, Georgescu M-M, Birge RB (2005) A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118:539–553

    Article  CAS  PubMed  Google Scholar 

  43. Brugnera E, Haney L, Grimsley C et al (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4:574–582

    CAS  PubMed  Google Scholar 

  44. Behnia R, Munro S (2005) Organelle identity and the signposts for membrane traffic. Nature 438:597–604

    Article  CAS  PubMed  Google Scholar 

  45. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  46. Botelho RJ (2009) Changing phosphoinositides “on the fly”: how trafficking vesicles avoid an identity crisis. Bioessays 31:1127–1136

    Article  CAS  PubMed  Google Scholar 

  47. Botelho RJ, Teruel M, Dierckman R et al (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151:1353–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mao YS, Yamaga M, Zhu X et al (2009) Essential and unique roles of PIP5K-gamma and -alpha in Fcgamma receptor-mediated phagocytosis. J Cell Biol 184:281–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Szymańska E, Korzeniowski M, Raynal P et al (2009) Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling. Exp Cell Res 315:981–995

    Article  PubMed  CAS  Google Scholar 

  50. Coppolino MG, Dierckman R, Loijens J et al (2002) Inhibition of phosphatidylinositol-4-phosphate 5-kinase Iα impairs localized actin remodeling and suppresses phagocytosis. J Biol Chem 277:43849–43857

    Article  CAS  PubMed  Google Scholar 

  51. Scott CC (2005) Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J Cell Biol 169:139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bohdanowicz M, Balkin DM, De Camilli P, Grinstein S (2012) Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling. Mol Biol Cell 23:176–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cox D, Tseng CC, Bjekic G, Greenberg S (1999) A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 274:1240–1247

    Article  CAS  PubMed  Google Scholar 

  54. Marshall JG, Booth JW, Stambolic V et al (2001) Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptor-mediated phagocytosis. J Cell Biol 153:1369–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Levin R, Grinstein S, Schlam D (2015) Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta 1851:805–823

    Article  CAS  PubMed  Google Scholar 

  56. Higgs HN, Pollard TD (2000) Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol 150:1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beemiller P, Zhang Y, Mohan S et al (2010) A Cdc42 activation cycle coordinated by PI 3-kinase during fc receptor-mediated phagocytosis. Mol Biol Cell 21:470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schlam D, Bagshaw RD, Freeman SA et al (2015) Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat Commun 6:8623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cox D, Berg JS, Cammer M et al (2002) Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol 4:469–477

    CAS  PubMed  Google Scholar 

  60. Dart AE, Tollis S, Bright MD et al (2012) The motor protein myosin 1G functions in Fc R-mediated phagocytosis. J Cell Sci 125:6020–6029

    Article  CAS  PubMed  Google Scholar 

  61. Horan KA, Watanabe K-I, Kong AM et al (2007) Regulation of FcgammaR-stimulated phagocytosis by the 72-kDa inositol polyphosphate 5-phosphatase: SHIP1, but not the 72-kDa 5-phosphatase, regulates complement receptor 3 mediated phagocytosis by differential recruitment of these 5-phosphatases to the phagocytic cup. Blood 110:4480–4491

    Article  CAS  PubMed  Google Scholar 

  62. Ai J, Maturu A, Johnson W et al (2006) The inositol phosphatase SHIP-2 down-regulates FcγR-mediated phagocytosis in murine macrophages independently of SHIP-1. Blood 107:813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bohdanowicz M, Cosío G, Backer JM, Grinstein S (2010) Class I and class III phosphoinositide 3-kinases are required for actin polymerization that propels phagosomes. J Cell Biol 191:999–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cox D, Dale BM, Kashiwada M et al (2001) A regulatory role for Src homology 2 domain-containing inositol 5’-phosphatase (SHIP) in phagocytosis mediated by Fc gamma receptors and complement receptor 3 (alpha(M)beta(2); CD11b/CD18). J Exp Med 193:61–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheng S, Wang K, Zou W et al (2015) PtdIns(4,5)P(2) and PtdIns3P coordinate to regulate phagosomal sealing for apoptotic cell clearance. J Cell Biol 210:485–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Appelqvist H, Wäster P, Kågedal K, Öllinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5:214–226

    Article  CAS  PubMed  Google Scholar 

  67. Pei G, Repnik U, Griffiths G, Gutierrez MG (2014) Identification of an immune-regulated phagosomal Rab cascade in macrophages. J Cell Sci 127:2071–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Egami Y, Araki N (2012) Rab20 regulates phagosome maturation in RAW264 macrophages during Fc gamma receptor-mediated phagocytosis. PLoS One 7, e35663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Z, Zhang T, Wang S et al (2014) Molecular mechanism for Rabex-5 GEF activation by Rabaptin-5. Elife 3

    Google Scholar 

  70. Kitano M, Nakaya M, Nakamura T et al (2008) Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature 453:241–245

    Article  CAS  PubMed  Google Scholar 

  71. Mishra A, Eathiraj S, Corvera S, Lambright DG (2010) Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal Autoantigen 1 (EEA1). Proc Natl Acad Sci U S A 107:10866–10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Simonsen A, Lippé R, Christoforidis S et al (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:494–498

    Article  CAS  PubMed  Google Scholar 

  73. Murray JT, Panaretou C, Stenmark H et al (2002) Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 3:416–427

    Article  CAS  PubMed  Google Scholar 

  74. Simonsen A, Gaullier JM, D’Arrigo A, Stenmark H (1999) The Rab5 effector EEA1 interacts directly with syntaxin-6. J Biol Chem 274:28857–28860

    Article  CAS  PubMed  Google Scholar 

  75. McBride HM, Rybin V, Murphy C et al (1999) Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98:377–386

    Article  CAS  PubMed  Google Scholar 

  76. Christoforidis S, McBride HM, Burgoyne RD, Zerial M (1999) The Rab5 effector EEA1 is a core component of endosome docking. Nature 397:621–625

    Article  CAS  PubMed  Google Scholar 

  77. Fratti RA, Backer JM, Gruenberg J et al (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154:631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hackam DJ, Rotstein OD, Zhang WJ et al (1997) Regulation of phagosomal acidification. J Biol Chem 272:29810–29820

    Article  CAS  PubMed  Google Scholar 

  79. Sturgill-Koszycki S, Schlesinger P, Chakraborty P et al (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681

    Article  CAS  PubMed  Google Scholar 

  80. Poteryaev D, Datta S, Ackema K et al (2010) Identification of the switch in early-to-late endosome transition. Cell 141:497–508

    Article  CAS  PubMed  Google Scholar 

  81. Kinchen JM, Ravichandran KS (2010) Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 464:778–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Haas AK, Fuchs E, Kopajtich R, Barr FA (2005) A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat Cell Biol 7:887–893

    Article  CAS  PubMed  Google Scholar 

  83. Nordmann M, Cabrera M, Perz A et al (2010) The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol 20:1654–1659

    Article  CAS  PubMed  Google Scholar 

  84. Cabrera M, Nordmann M, Perz A et al (2014) The Mon1-Ccz1 GEF activates the Rab7 GTPase Ypt7 via a longin-fold-Rab interface and association with PI3P-positive membranes. J Cell Sci 127:1043–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Balderhaar HJK, Ungermann C (2013) CORVET and HOPS tethering complexes—coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316

    Article  CAS  PubMed  Google Scholar 

  86. Johansson M, Rocha N, Zwart W et al (2007) Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor βIII spectrin. J Cell Biol 176:459–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Harrison RE, Bucci C, Vieira OV et al (2003) Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 23:6494–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wyroba E, Surmacz L, Osinska M, Wiejak J (2007) Phagosome maturation in unicellular eukaryote Paramecium: the presence of RILP, Rab7 and LAMP-2 homologues. Eur J Histochem 51:163–172

    CAS  PubMed  Google Scholar 

  89. Sun-Wada G-H, Tabata H, Kawamura N et al (2009) Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification. J Cell Sci 122:2504–2513

    Article  CAS  PubMed  Google Scholar 

  90. Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Akbar MA, Tracy C, Kahr WHA, Krämer H (2011) The full-of-bacteria gene is required for phagosome maturation during immune defense in Drosophila. J Cell Biol 192:383–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Krämer L, Ungermann C (2011) HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites. Mol Biol Cell 22:2601–2611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lobingier BT, Merz AJ (2012) Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. Mol Biol Cell 23:4611–4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dayam RM, Saric A, Shilliday RE, Botelho RJ (2015) The phosphoinositide-gated lysosomal Ca2+ channel, TRPML1, is required for phagosome maturation. Traffic 16:1010–26

    Article  CAS  PubMed  Google Scholar 

  95. Wang W, Zhang X, Gao Q, Xu H (2014) Trpml1: an ion channel in the lysosome. Handb Exp Pharmacol 222:631–645

    Article  CAS  PubMed  Google Scholar 

  96. Czibener C, Sherer NM, Becker SM et al (2006) Ca2+ and synaptotagmin VII-dependent delivery of lysosomal membrane to nascent phagosomes. J Cell Biol 174:997–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Südhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690

    Article  PubMed  CAS  Google Scholar 

  98. Dong X, Shen D, Wang X et al (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Ho CY, Alghamdi TA, Botelho RJ (2012) Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP 2. Traffic 13:1–8

    Article  CAS  PubMed  Google Scholar 

  100. McCartney AJ, Zhang Y, Weisman LS (2014) Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. Bioessays 36:52–64

    Article  CAS  PubMed  Google Scholar 

  101. Ikonomov OC, Sbrissa D, Shisheva A (2001) Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J Biol Chem 276:26141–26147

    Article  CAS  PubMed  Google Scholar 

  102. Sbrissa D, Ikonomov OC, Fenner H, Shisheva A (2008) ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol 384:766–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jin N, Chow CY, Liu L et al (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J 27:3221–3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim GHE, Dayam RM, Prashar A et al (2014) PIKfyve inhibition interferes with phagosome and endosome maturation in macrophages. Traffic 15:1143–1163

    Article  CAS  PubMed  Google Scholar 

  105. Hofmann I, Munro S (2006) An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J Cell Sci 119:1494–1503

    Article  CAS  PubMed  Google Scholar 

  106. Bagshaw RD, Callahan JW, Mahuran DJ (2006) The Arf-family protein, Arl8b, is involved in the spatial distribution of lysosomes. Biochem Biophys Res Commun 344:1186–1191

    Article  CAS  PubMed  Google Scholar 

  107. Khatter D, Sindhwani A, Sharma M (2015) Arf-like GTPase Arl8: moving from the periphery to the center of lysosomal biology. Cell Logist 5, e1086501

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rosa-Ferreira C, Munro S (2011) Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev Cell 21:1171–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sasaki A, Nakae I, Nagasawa M et al (2013) Arl8/ARL-8 functions in apoptotic cell removal by mediating phagolysosome formation in Caenorhabditis elegans. Mol Biol Cell 24:1584–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Garg S, Sharma M, Ung C et al (2011) Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf-like GTPase Arl8b. Immunity 35:182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Khatter D, Raina VB, Dwivedi D et al (2015) The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes. J Cell Sci 128:1746–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. do Vale A, Cabanes D, Sousa S (2016) Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol 7:42

    PubMed  PubMed Central  Google Scholar 

  113. Smith LM, May RC (2013) Mechanisms of microbial escape from phagocyte killing. Biochem Soc Trans 41:475–490

    Article  CAS  PubMed  Google Scholar 

  114. Botelho RJ, Hackam DJ, Schreiber AD, Grinstein S (2000) Role of COPI in phagosome maturation. J Biol Chem 275:15717–15727

    Article  CAS  PubMed  Google Scholar 

  115. Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS (2013) Presentation of phagocytosed antigens by MHC Class I and II. Traffic 14:135–152

    Article  CAS  PubMed  Google Scholar 

  116. Boes M, Bertho N, Cerny J et al (2003) T cells induce extended class II MHC compartments in dendritic cells in a toll-like receptor-dependent manner. J Immunol 171:4081–4088

    Article  CAS  PubMed  Google Scholar 

  117. Vyas JM, Kim Y-M, Artavanis-Tsakonas K et al (2007) Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells. J Immunol 178:7199–7210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mantegazza AR, Zajac AL, Twelvetrees A et al (2014) TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation. Proc Natl Acad Sci U S A 111:15508–15513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saric A, Hipolito VEB, Kay JG et al (2016) mTOR controls lysosome tubulation and antigen presentation in macrophages and dendritic cells. Mol Biol Cell 27:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  Google Scholar 

  121. Krajcovic M, Krishna S, Akkari L et al (2013) mTOR regulates phagosome and entotic vacuole fission. Mol Biol Cell 24:3736–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sancak Y, Bar-Peled L, Zoncu R et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zoncu R, Bar-Peled L, Efeyan A et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yu L, McPhee CK, Zheng L et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.G. is funded through support from Ryerson University, a Canada Research Chair and Early Researcher Awards to R.J.B. Research in the laboratory of R.J.B. is supported by grants from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto J. Botelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gray, M., Botelho, R.J. (2017). Phagocytosis: Hungry, Hungry Cells. In: Botelho, R. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 1519. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6581-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6581-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6579-3

  • Online ISBN: 978-1-4939-6581-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics