Skip to main content

Discovery and Subtyping of Neo-Epitope Specific T-Cell Responses for Cancer Immunotherapy: Addressing the Mutanome

  • Protocol
  • First Online:
RNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1499))

Abstract

Cancer accumulates 10s to 1000s of genomic mutations of which a fraction is immunogenic and may serve as an Achilles’ heel of tumor cells. Mutation-specific T cells can recognize these antigens and destroy malignant cells. Strategies to immunotherapeutically address individual tumor mutations employing peptide or mRNA based vaccines are now actively investigated in mice and humans. An important step of determining the therapeutic potential of a mutanome vaccine is the detection of mutation reactive T-cell responses. In this chapter we provide protocols to identify and subtype mutation specific T cells in mice based on IFN-γ ELISpot and flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross L (1943) Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 3:326–333

    Google Scholar 

  2. Coulie PG, Van den Eynde BJ, van der Bruggen P et al (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146

    Article  CAS  PubMed  Google Scholar 

  3. Melero I, Gaudernack G, Gerritsen W et al (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11:509–524

    Article  CAS  PubMed  Google Scholar 

  4. Boon T, Kellermann O (1977) Rejection by syngeneic mice of cell variants obtained by mutagenesis of a malignant teratocarcinoma cell line. Proc Natl Acad Sci U S A 74:272–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wölfel T, Hauer M, Schneider J et al (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284

    Article  PubMed  Google Scholar 

  6. Brown SD, Warren RL, Gibb EA et al (2014) Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 24:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tran E, Turcotte S, Gros A et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–645

    Article  CAS  PubMed  Google Scholar 

  8. Van Rooij N, Van Buuren MM, Philips D et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31:e439–e442

    Article  PubMed  Google Scholar 

  9. Robbins PF, Lu Y-C, El-Gamil M et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu Y-C, Yao X, Li YF et al (2013) Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression. J Immunol 190:6034–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Allen EM, Miao D, Schilling B et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rizvi NA, Hellmann MD, Snyder A et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carbone DP, Ciernik IF, Kelley MJ et al (2005) Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol 23:5099–5107

    Article  PubMed  Google Scholar 

  15. Castle JC, Kreiter S, Diekmann J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72:1081–1091

    Article  CAS  PubMed  Google Scholar 

  16. Kreiter S, Vormehr M, van de Roemer N et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics - developing a new class of drugs. Nat Rev Drug Discov 13:759–780

    Article  CAS  PubMed  Google Scholar 

  18. Holtkamp S, Kreiter S, Selmi A et al (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009–4017

    Article  CAS  PubMed  Google Scholar 

  19. Kuhn AN, Diken M, Kreiter S et al (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17:961–971

    Article  CAS  PubMed  Google Scholar 

  20. Kreiter S, Selmi A, Diken M et al (2008) Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol 180:309–318

    Article  CAS  PubMed  Google Scholar 

  21. Lutz MB, Kukutsch N, Ogilvie AL et al (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the CI3 excellence cluster program of the Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Sahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Diken, M., Vormehr, M., Grunwitz, C., Kreiter, S., Türeci, Ö., Sahin, U. (2017). Discovery and Subtyping of Neo-Epitope Specific T-Cell Responses for Cancer Immunotherapy: Addressing the Mutanome. In: Kramps, T., Elbers, K. (eds) RNA Vaccines. Methods in Molecular Biology, vol 1499. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6481-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6481-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6479-6

  • Online ISBN: 978-1-4939-6481-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics