Skip to main content

Reconstructing ERK Signaling in the Drosophila Embryo from Fixed Images

  • Protocol
  • First Online:
ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

The early Drosophila embryo provides unique opportunities for quantitative studies of ERK signaling. This system is characterized by simple anatomy, the ease of obtaining large numbers of staged embryos, and the availability of powerful tools for genetic manipulation of the ERK pathway. Here, we describe how these experimental advantages can be combined with recently developed microfluidic devices for high throughput imaging of ERK activation dynamics. We focus on the stage during the third hour of development, when ERK activation is essential for patterning of the future nerve cord. Our approach starts with an ensemble of fixed embryos stained with an antibody that recognizes the active, dually phosphorylated form of ERK. Each embryo in this ensemble provides a snapshot of the spatial and temporal pattern of ERK activation during development. We then quantitatively estimate the ages of fixed embryos using a model that links their morphology and developmental time. This model is learned based on live imaging of cellularization and gastrulation, two highly stereotyped morphogenetic processes at this stage of embryogenesis. Applying this approach, we can characterize ERK signaling at high spatial and temporal resolution. Our methodology can be readily extended to studies of ERK regulation and function in multiple mutant backgrounds, providing a versatile assay for quantitative studies of developmental ERK signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Futran AS, Link AJ, Seger R et al (2013) ERK as a model for systems biology of enzyme kinetics in cells. Curr Biol 23:R972–R979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Newbern J, Zhong J, Wickramasinghe RS et al (2008) Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc Natl Acad Sci U S A 105:17115–17120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dsilva CJ, Lim B, Lu H et al (2015) Temporal ordering and registration of images in studies of developmental dynamics. Development 142:1717–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lim B, Dsilva CJ, Levario TJ et al (2015) Dynamics of inductive ERK signaling in the Drosophila embryo. Curr Biol 25:1784–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gabay L, Seger R, Shilo BZ (1997) In situ activation pattern of Drosophila EGF receptor pathway during development. Science 277:1103–1106

    Article  CAS  PubMed  Google Scholar 

  7. Bronner G, Jackle H (1991) Control and function of terminal gap gene activity in the posterior pole region of the Drosophila embryo. Mech Dev 35:205–211

    Article  CAS  PubMed  Google Scholar 

  8. von Ohlen T, Doe CQ (2000) Convergence of dorsal, dpp, and egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal-ventral columns. Dev Biol 224:362–372

    Article  Google Scholar 

  9. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  10. Kosman D, Mizutani CM, Lemons D et al (2004) Multiplex detection of RNA expression in Drosophila embryos. Science 305:846

    Article  CAS  PubMed  Google Scholar 

  11. Coppey M, Boettiger AN, Berezhkovskii AM et al (2008) Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr Biol 18:915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levario TJ, Zhan M, Lim B et al (2013) Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat Protoc 8:721–736

    Article  PubMed  Google Scholar 

  13. Lecuit T, Samanta R, Wieschaus E (2002) slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev Cell 2:425–436

    Article  CAS  PubMed  Google Scholar 

  14. Figard L, Xu H, Garcia HG et al (2013) The plasma membrane flattens out to fuel cell-surface growth during Drosophila cellularization. Dev Cell 27:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shlens J (2005) A tutorial on principal component analysis. Systems Neurobiology Laboratory, University of California at San Diego, San Diego, CA

    Google Scholar 

  16. Jolliffe IT (2002) Principal component analysis. Springer series in statistics, 2nd edn. Springer, New York, NY

    Google Scholar 

  17. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. IEEE Comput Soc Conf Comput Vision Pattern Recogn 1991:586–591

    Google Scholar 

  18. Wasserman L (2004) All of statistics : a concise course in statistical inference. Springer texts in statistics. Springer, New York, NY

    Book  Google Scholar 

  19. Heiberger RM, Holland B (2004) Statistical analysis and data display: an intermediate course with examples in S-plus, R, and SAS. Springer texts in statistics. Springer, New York, NY

    Book  Google Scholar 

  20. Chung K, Kim Y, Kanodia JS et al (2011) A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 8:171–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.L. and S.Y.S. were supported by the National Institutes of Health Grant R01GM086537. C.J.D. was supported by the Department of Energy Computational Science Graduate Fellowship (CSGF), grant number DE-FG02-97ER25308, and the National Science Foundation Graduate Research Fellowship, Grant No. DGE 1148900. I.G.K. was supported by the National Science Foundation (CDS&E program through CBET and CMMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Y. Shvartsman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lim, B., Dsilva, C.J., Kevrekidis, I.G., Shvartsman, S.Y. (2017). Reconstructing ERK Signaling in the Drosophila Embryo from Fixed Images. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics