Skip to main content

Analysis of Ras/ERK Compartmentalization by Subcellular Fractionation

  • Protocol
  • First Online:
ERK Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

A vast number of stimuli use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their cognate receptors, in order to regulate multiple cellular functions, including key processes such as proliferation, cell cycle progression, differentiation, and survival. The duration, intensity and specificity of the responses are, in part, controlled by the compartmentalization/subcellular localization of the signaling intermediaries. Ras proteins are found in different plasma membrane microdomains and endomembranes. At these localizations, Ras is subject to site-specific regulatory mechanisms, distinctively engaging effector pathways and switching-on diverse genetic programs to generate a multitude of biological responses. The Ras effector pathway leading to ERKs activation is also subject to space-related regulatory processes. About half of ERK1/2 substrates are found in the nucleus and function mainly as transcription factors. The other half resides in the cytosol and other cellular organelles. Such subcellular distribution enhances the complexity of the Ras/ERK cascade and constitutes an essential mechanism to endow variability to its signals, which enables their participation in the regulation of a broad variety of functions. Thus, analyzing the subcellular compartmentalization of the members of the Ras/ERK cascade constitutes an important factor to be taken into account when studying specific biological responses evoked by Ras/ERK signals. Herein, we describe methods for such purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crespo P, Leon J (2000) Ras proteins in the control of the cell cycle and cell differentiation. Cell Mol Life Sci 57:1613–1636

    Article  CAS  PubMed  Google Scholar 

  2. Prior IA, Harding A, Yan J et al (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375

    Article  CAS  PubMed  Google Scholar 

  3. Matallanas D, Arozarena I, Berciano MT et al (2003) Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization. J Biol Chem 278:4572–4581

    Article  CAS  PubMed  Google Scholar 

  4. Chiu VK, Bivona T, Hach A et al (2002) Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4:343–350

    CAS  PubMed  Google Scholar 

  5. Fehrenbacher N, Bar-Sagi D, Philips M (2009) Ras/MAPK signaling from endomembranes. Mol Oncol 3:297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choy E, Chiu VK, Silletti J et al (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98:69–80

    Article  CAS  PubMed  Google Scholar 

  7. Arozarena I, Matallanas D, Berciano MT et al (2004) Activation of H-Ras in the endoplasmic reticulum by the RasGRF family guanine nucleotide exchange factors. Mol Cell Biol 24:1516–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Caloca MJ, Zugaza JL, Bustelo XR (2003) Exchange factors of the RasGRP family mediate Ras activation in the Golgi. J Biol Chem 278:33465–33473

    Article  CAS  PubMed  Google Scholar 

  9. Bivona TG, Perez De Castro I, Ahearn IM et al (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424:694–698

    Article  CAS  PubMed  Google Scholar 

  10. Arozarena I, Calvo F, Crespo P (2011) Ras, an actor or many stages: posttranslational modifications, localization, and site-specified events. Genes Cancer 2:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matallanas D, Sanz-Moreno V, Arozarena I et al (2006) Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation. Mol Cell Biol 26:100–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Agudo-Ibanez L, Nunez F, Calvo F et al (2007) Transcriptomal profiling of site-specific Ras signals. Cell Signal 19:2264–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harding A, Tian T, Westbury E et al (2005) Subcellular localization determines MAP kinase signal output. Curr Biol 15:869–873

    Article  CAS  PubMed  Google Scholar 

  14. Agudo-Ibanez L, Herrero A, Barbacid M et al (2015) H-ras distribution and signaling in plasma membrane microdomains are regulated by acylation and deacylation events. Mol Cell Biol 35:1898–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

    Article  CAS  PubMed  Google Scholar 

  16. Pouyssegur J, Lenormand P (2003) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Eur J Biochem 270:3291–3299

    Article  CAS  PubMed  Google Scholar 

  17. Burack WR, Shaw AS (2005) Live cell imaging of ERK and MEK: simple binding equilibrium explains the regulated nucleocytoplasmic distribution of ERK. J Biol Chem 280:3832–3837

    Article  CAS  PubMed  Google Scholar 

  18. Sanz-Moreno V, Casar B, Crespo P (2003) p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels. Mol Cell Biol 23:3079–3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Glading A, Uberall F, Keyse SM et al (2001) Membrane proximal ERK signaling is required for M-calpain activation downstream of epidermal growth factor receptor signaling. J Biol Chem 276:23341–23348

    Article  CAS  PubMed  Google Scholar 

  20. Ajenjo N, Canon E, Sanchez-Perez I et al (2004) Subcellular localization determines the protective effects of activated ERK2 against distinct apoptogenic stimuli in myeloid leukemia cells. J Biol Chem 279:32813–32823

    Article  CAS  PubMed  Google Scholar 

  21. Casar B, Arozarena I, Sanz-Moreno V et al (2009) Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol Cell Biol 29:1338–1353

    Article  CAS  PubMed  Google Scholar 

  22. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    Article  CAS  PubMed  Google Scholar 

  23. Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12:915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lenormand P, Sardet C, Pages G et al (1993) Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol 122:1079–1088

    Article  CAS  PubMed  Google Scholar 

  25. Formstecher E, Ramos JW, Fauquet M et al (2001) PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev Cell 1:239–250

    Article  CAS  PubMed  Google Scholar 

  26. Ishibe S, Joly D, Zhu X et al (2003) Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell 12:1275–1285

    Article  CAS  PubMed  Google Scholar 

  27. Torii S, Kusakabe M, Yamamoto T et al (2004) Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7:33–44

    Article  CAS  PubMed  Google Scholar 

  28. Ramos JW (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40:2707–2719

    Article  CAS  PubMed  Google Scholar 

  29. Casar B, Pinto A, Crespo P (2009) ERK dimers and scaffold proteins: unexpected partners for a forgotten (cytoplasmic) task. Cell Cycle 8:1007–1013

    Article  CAS  PubMed  Google Scholar 

  30. Khokhlatchev AV, Canagarajah B, Wilsbacher J et al (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605–615

    Article  CAS  PubMed  Google Scholar 

  31. Casar B, Pinto A, Crespo P (2008) Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol Cell 31:708–721

    Article  CAS  PubMed  Google Scholar 

  32. Herrero A, Pinto A, Colon-Bolea P et al (2015) Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell 28:170–182

    Article  CAS  PubMed  Google Scholar 

  33. Yang M, Ellenberg J, Bonifacino JS et al (1997) The transmembrane domain of a carboxyl-terminal anchored protein determines localization to the endoplasmic reticulum. J Biol Chem 272:1970–1975

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Kang DE, Xia W et al (1998) Subcellular distribution and turnover of presenilins in transfected cells. J Biol Chem 273:12436–12442

    Article  CAS  PubMed  Google Scholar 

  35. Boulter E, Garcia-Mata R, Guilluy C et al (2010) Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 12:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaaro H, Rubinfeld H, Hanoch T et al (1997) Nuclear translocation of mitogen-activated protein kinase kinase (MEK1) in response to mitogenic stimulation. Proc Natl Acad Sci USA 94:3742–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Casar B, Sanz-Moreno V, Yazicioglu MN et al (2007) Mxi2 promotes stimulus-independent ERK nuclear translocation. EMBO J 26:635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berta Casar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Agudo-Ibañez, L., Crespo, P., Casar, B. (2017). Analysis of Ras/ERK Compartmentalization by Subcellular Fractionation. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics