Skip to main content

Selecting Hypomethylated Genomic Regions Using MRE-Seq

  • Protocol
  • First Online:
Plant Synthetic Promoters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1482))

Abstract

Here, we describe a method capable of filtering the hypomethylated part of plant genomes, the so-called hypomethylome. The principle of the method is based on the filtration and sequence analysis of small DNA fragments generated by methylation-sensitive four-cutter restriction endonucleases, possessing (5me)CpG motifs in their recognition sites. The majority of these fragments represent genes and their flanking regions containing also regulatory elements—the gene space of the genome. Besides the enrichment of the gene space, another advantage of the method is the simultaneous depletion of repetitive elements due to their methylated nature and its easy application on complex and large plant genomes. Additionally to the wet lab procedure, we describe how to analyze the data using bioinformatics methods and how to apply the method to comparative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabinowicz PD, Citek R, Budiman MA et al (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440. doi:10.1101/gr.4100405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang J, Marowsky NC, Fan C (2014) Divergence of gene body DNA methylation and evolution of plant duplicate genes. PLoS One 9, e110357. doi:10.1371/journal.pone.0110357

    Article  PubMed  PubMed Central  Google Scholar 

  3. Springer NM, Xu X, Barbazuk WB (2004) Utility of different gene enrichment approaches toward identifying and sequencing the maize gene space. Plant Physiol 136:3023–3033. doi:10.1104/pp.104.043323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palmer LE, Rabinowicz PD, O’Shaughnessy AL et al (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2117. doi:10.1126/science.1091265

    Article  PubMed  Google Scholar 

  5. Rabinowicz PD, Palmer LE, May BP et al (2003) Genes and transposons are differentially methylated in plants, but not in mammals. Genome Res 13:2658–2664. doi:10.1101/gr.1784803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raleigh EA, Murray NE, Revel H et al (1988) McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res 16:1563–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whitelaw CA, Barbazuk WB, Pertea G et al (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120. doi:10.1126/science.1090047

    Article  PubMed  Google Scholar 

  8. Berenyi M, Mauleon RP, Kopecky D et al (2009) Isolation of plant gene space-related sequence elements by high C + G patch (HCGP) filtration: model study on rice. Plant Mol Biol Report 27:79–85. doi:10.1007/s11105-008-0063-2

    Article  CAS  Google Scholar 

  9. Wischnitzki E, Sehr EM, Hansel-Hohl K et al (2015) How to isolate a plant’s hypomethylome in one shot. Biomed Res Int 2015:570568. doi:10.1155/2015/570568

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li D, Zhang B, Xing X, Wang T (2015) Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods 72:29–40. doi:10.1016/j.ymeth.2014.10.032

    Article  CAS  PubMed  Google Scholar 

  11. Zhang B, Zhou Y, Lin N et al (2013) Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Res 23:1522–1540. doi:10.1101/gr.156539.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keller J, Bancroft I. 3_CTAB_DNA_extraction. https://www.arabidopsis.org/download_files/Protocols/compleat_guide/3_CTAB_DNA_extraction.pdf

  13. Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584. doi:10.1038/nature12211

    Article  CAS  PubMed  Google Scholar 

  14. Ballal RD, Saha T, Fan S et al (2009) BRCA1 localization to the telomere and its loss from the telomere in response to DNA damage. J Biol Chem 284:36083–36098. doi:10.1074/jbc.M109.025825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dlaska M, Anderl C, Eisterer W, Bechter OE (2008) Detection of circular telomeric DNA without 2D gel electrophoresis. DNA Cell Biol 27:489–496. doi:10.1089/dna.2008.0741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10. doi:10.14806/ej.17.1.200

    Google Scholar 

  17. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nussbaumer T, Martis MM, Roessner SK et al (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41:D1144–1151. doi:10.1093/nar/gks1153

    Article  CAS  PubMed  Google Scholar 

  20. Reinert K, Langmead B, Weese D, Evers DJ (2015) Alignment of next-generation sequencing reads. Annu Rev Genomics Hum Genet 16:133–151. doi:10.1146/annurev-genom-090413-025358

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  22. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. doi:10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. doi:10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  25. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  26. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jones P, Binns D, Chang H-Y et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. doi:10.1093/bioinformatics/btu031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mitchell A, Chang H-Y, Daugherty L et al (2014) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. doi:10.1093/nar/gku1243

    Google Scholar 

  29. Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi:10.1093/bioinformatics/bti610

    Article  CAS  PubMed  Google Scholar 

  30. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:1–12. doi:10.1155/2008/619832

    Article  Google Scholar 

  31. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. doi:10.1093/bioinformatics/btl158

    Article  CAS  PubMed  Google Scholar 

  32. Fu L, Niu B, Zhu Z et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. doi:10.1093/bioinformatics/bts565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. doi:10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. doi:10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  35. Shagin DA, Lukyanov KA, Vagner LL, Matz MV (1999) Regulation of average length of complex PCR product. Nucleic Acids Res 27, e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. doi:10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the AIT Austrian Institute of Technology GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Wischnitzki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wischnitzki, E., Burg, K., Berenyi, M., Sehr, E.M. (2016). Selecting Hypomethylated Genomic Regions Using MRE-Seq. In: Hehl, R. (eds) Plant Synthetic Promoters. Methods in Molecular Biology, vol 1482. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6396-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6396-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6394-2

  • Online ISBN: 978-1-4939-6396-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics