Skip to main content

The Physcomitrella patens System for Transient Gene Expression Assays

  • Protocol
  • First Online:
Plant Synthetic Promoters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1482))

Abstract

Transient expression assays are valuable techniques to study in vivo the transcriptional regulation of gene expression. These methods allow to assess the transcriptional properties of a given transcription factor (TF) or a complex of regulatory proteins against specific DNA motifs, called cis-regulatory elements. Here, we describe a fast, efficient, and reliable method based on the use of Physcomitrella patens protoplasts that allows the study of gene expression in a qualitative and quantitative manner by combining the advantage of GFP (green fluorescent protein) as a marker of promoter activity with flow cytometry for accurate measurement of fluorescence in individual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franco-Zorrilla JM, Lopez-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci U S A 111:2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prouse MB, Campbell MM (2013) Interactions between the R2R3-MYB transcription factor, AtMYB61, and target DNA binding sites. PLoS One 8, e65132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li JJ, Herskowitz I (1993) Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262:1870–1874

    Article  CAS  PubMed  Google Scholar 

  4. Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  CAS  PubMed  Google Scholar 

  5. Berger B, Stracke R, Yatusevich R, Weisshaar B, Flügge UI, Gigolashvili T (2007) A simplified method for the analysis of transcription factor–promoter interactions that allows high-throughput data generation. Plant J 50:911–916

    Article  CAS  PubMed  Google Scholar 

  6. Fukuda H, Ito M, Sugiyama M, Komamine A (1994) Mechanisms of the proliferation and differentiation of plant cells in cell culture systems. Int J Dev Biol 38:287–299

    CAS  PubMed  Google Scholar 

  7. Hartmann U, Valentine WJ, Christie JM, Hays J, Jenkins GI, Weisshaar B (1998) Identification of UV⁄blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol 36:741–754

    Article  CAS  PubMed  Google Scholar 

  8. Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169–179

    Article  CAS  PubMed  Google Scholar 

  9. Thévenin J, Dubos C, Xu W, Le Gourrierec J, Kelemen Z, Charlot F, Nogué F, Lepiniec L, Dubreucq B (2012) A new system for fast and quantitative analysis of heterologous gene expression in plants. New Phytol 193:504–512

    Article  PubMed  Google Scholar 

  10. Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  11. Ashton NW, Grimsley N, Cove DJ (1979) Analysis of gametopytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144:427–435

    Article  CAS  PubMed  Google Scholar 

  12. Schaefer DG, Zrÿd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  CAS  PubMed  Google Scholar 

  13. Dubos C, Kelemen Z, Sebastian A, Bulow L, Huep G, Xu W, Grain D, Salsac F, Brousse C, Lepiniec L, Weisshaar B, Contreras-Moreira B, Hehl R (2014) Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC Genomics 15:317

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schaart JG, Dubos C, Romero De La Fuente I, van Houwelingen AM, de Vos RC, Jonker HH, Xu W, Routaboul JM, Lepiniec L, Bovy AG (2013) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol 197:454–467

    Article  CAS  PubMed  Google Scholar 

  15. Xu W, Grain D, Le Gourrierec J, Harscoet E, Berger A, Jauvion V, Scagnelli A, Berger N, Bidzinski P, Kelemen Z, Salsac F, Baudry A, Routaboul JM, Lepiniec L, Dubos C (2013) Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis. New Phytol 198:59–70

    Article  CAS  PubMed  Google Scholar 

  16. Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C (2014) Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol 202:132–144

    Article  CAS  PubMed  Google Scholar 

  17. Xu W, Lepiniec L, Dubos C (2014) New insights toward the transcriptional engineering of proanthocyanidin biosynthesis. Plant Signal Behav 9, e28736

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  CAS  PubMed  Google Scholar 

  19. Maas C, Werr W (1989) Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep 8:148–151

    Article  CAS  PubMed  Google Scholar 

  20. Berges T, Barreau C (1988) Heat shock at an elevated temperature improves transformation efficiency of protoplasts from Podospora anserina. J Gen Microbiol 135:601–604

    Google Scholar 

  21. Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  22. Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JW, Shaw PJ (2004) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the “Plateforme de cytologie et imagerie végétale (PCIV)” of the Plant Observatory from the Institut Jean-Pierre Bourgin (IJPB) for excellent technical support. We also thank F. Charlot and F. Nogué (IJPB) for their help and advice in setting up this protocol and for providing P. patens spores. We acknowledge China Scholarship Council (CSC) for supporting W.X. This work was supported by two projects, STREG (Plant-KBBE) and CERES (ANR-2010-BLAN-1238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Dubos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thévenin, J., Xu, W., Vaisman, L., Lepiniec, L., Dubreucq, B., Dubos, C. (2016). The Physcomitrella patens System for Transient Gene Expression Assays. In: Hehl, R. (eds) Plant Synthetic Promoters. Methods in Molecular Biology, vol 1482. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6396-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6396-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6394-2

  • Online ISBN: 978-1-4939-6396-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics