Skip to main content

Experimental Design

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 119))

  • 2466 Accesses

Abstract

This chapter addresses issues particular to the optimal design of fMRI experiments. It describes procedures for isolating the psychological process of interest and gives an overview of block, event-related and participant-response-dependent designs. An additional focus is placed on data analysis with emphasis on optimizing and isolating the neuroimaging signal in activated brain regions. Finally, the chapter addresses a number of practical matters including optimal sample sizes and trial durations that confront all researchers when designing their experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helmchen C, Mohr C, Erdmann C, Binkofski F, Buchel C (2006) Neural activity related to self- versus externally generated painful stimuli reveals distinct differences in the lateral pain system in a parametric fMRI study. Hum Brain Mapp 27:755–765

    Article  PubMed  Google Scholar 

  2. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC (1997) A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5:49–62

    Article  CAS  PubMed  Google Scholar 

  3. Price CJ, Friston KJ (1997) Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 5:261–270

    Article  CAS  PubMed  Google Scholar 

  4. Garavan H, Ross TJ, Murphy K, Roche RA, Stein EA (2002) Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. Neuroimage 17:1820–1829

    Article  CAS  PubMed  Google Scholar 

  5. Donaldson DI, Petersen SE, Ollinger JM, Buckner RL (2001) Dissociating state and item components of recognition memory using fMRI. Neuroimage 13:129–142

    Article  CAS  PubMed  Google Scholar 

  6. Simões-Franklin C, Hester R, Shpaner M, Foxe JJ, Garavan H (2010) Executive function and error detection: the effect of motivation on cingulate and ventral striatum activity. Hum Brain Mapp 31:458–469

    PubMed  PubMed Central  Google Scholar 

  7. Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2007) Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37:579–588

    Article  PubMed  Google Scholar 

  8. Weiskopf N, Veit R, Erb M et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19:577–586

    Article  PubMed  Google Scholar 

  9. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical activity during natural vision. Science 303:1634–1640

    Article  CAS  PubMed  Google Scholar 

  10. Slotnick SD, Yantis S (2005) Common neural substrates for the control and effects of visual attention and perceptual bistability. Brain Res Cogn Brain Res 24:97–108

    Article  PubMed  Google Scholar 

  11. Hahn B, Ross TJ, Stein EA (2007) Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb Cortex 17:1664–1671

    Article  PubMed  Google Scholar 

  12. Risinger RC, Salmeron BJ, Ross TJ et al (2005) Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage 26:1097–1108

    Article  PubMed  Google Scholar 

  13. Kampe KK, Frith CD, Frith U (2003) “Hey John”: signals conveying communicative intention toward the self activate brain regions associated with “mentalizing,” regardless of modality. J Neurosci 23:5258–5263

    CAS  PubMed  Google Scholar 

  14. O'Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38(2):329–337, PMID: 12718865

    Article  PubMed  Google Scholar 

  15. Murphy K, Garavan H (2004) Artifactual fMRI group and condition differences driven by performance confounds. Neuroimage 21:219–228

    Article  CAS  PubMed  Google Scholar 

  16. Poldrack RA (2000) Imaging brain plasticity: conceptual and methodological issues--a theoretical review. Neuroimage 12:1–13

    Article  CAS  PubMed  Google Scholar 

  17. Kelly AM, Garavan H (2005) Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15:1089–1102

    Article  PubMed  Google Scholar 

  18. Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2:e124

    Article  PubMed  PubMed Central  Google Scholar 

  19. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR (2013) MR.Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 5:365–76. doi:10.1038/nrn3475, Epub 2013 Apr 10. Erratum in: Nat Rev Neurosci. 6, 451

    Article  Google Scholar 

  20. Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? Neuroimage 10:1–5

    Article  CAS  PubMed  Google Scholar 

  21. Desmond JE, Glover GH (2002) Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods 118:115–128

    Article  PubMed  Google Scholar 

  22. Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline JB (2007) Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35:105–120

    Article  PubMed  Google Scholar 

  23. Murphy K, Garavan H (2004) An empirical investigation into the number of subjects required for an event-related fMRI study. Neuroimage 22:879–885

    Article  PubMed  Google Scholar 

  24. Saad ZS, Ropella KM, DeYoe EA, Bandettini PA (2003) The spatial extent of the BOLD response. Neuroimage 19:132–144

    Article  PubMed  Google Scholar 

  25. Huettel SA, McCarthy G (2001) The effects of single-trial averaging upon the spatial extent of fMRI activation. Neuroreport 12:2411–2416

    Article  CAS  PubMed  Google Scholar 

  26. Murphy K, Garavan H (2005) Deriving the optimal number of events for an event-related fMRI study based on the spatial extent of activation. Neuroimage 27:771–777

    Article  PubMed  Google Scholar 

  27. Murphy K, Bodurka J, Bandettini PA (2007) How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage 34:565–574

    Article  PubMed  Google Scholar 

  28. Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. Neuroimage 6:93–103

    Article  CAS  PubMed  Google Scholar 

  29. Friston KJ, Holmes AP, Poline JB et al (1995) Analysis of fMRI time-series revisited. Neuroimage 2:45–53

    Article  CAS  PubMed  Google Scholar 

  30. Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited–again. Neuroimage 2:173–181

    Article  CAS  PubMed  Google Scholar 

  31. Smith S, Jenkinson M, Beckmann C, Miller K, Woolrich M (2007) Meaningful design and contrast estimability in FMRI. Neuroimage 34:127–136

    Article  PubMed  Google Scholar 

  32. Bandettini PA, Cox RW (2000) Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Reson Med 43:540–548

    Article  CAS  PubMed  Google Scholar 

  33. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11:735–759

    Article  CAS  PubMed  Google Scholar 

  34. Dale AM (1999) Optimal experimental design for event-related fMRI. Hum Brain Mapp 8:109–114

    Article  CAS  PubMed  Google Scholar 

  35. Birn RM, Cox RW, Bandettini PA (2002) Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. Neuroimage 15:252–264

    Article  PubMed  Google Scholar 

  36. Liu TT, Frank LR, Wong EC, Buxton RB (2001) Detection power, estimation efficiency, and predictability in event-related fMRI. Neuroimage 13:759–773

    Article  CAS  PubMed  Google Scholar 

  37. Wager TD, Nichols TE (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18:293–309

    Article  PubMed  Google Scholar 

  38. Liu TT (2004) Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: design of experiments. Neuroimage 21:401–413

    Article  PubMed  Google Scholar 

  39. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167

    Article  CAS  PubMed  Google Scholar 

  40. Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31:1536–1548

    Article  PubMed  Google Scholar 

  41. Birn RM, Murphy K, Handwerker DA, Bandettini PA (2009) fMRI in the presence of task-correlated breathing variations. NeuroImage 47(3):1092–1104

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Garavan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Garavan, H., Murphy, K. (2016). Experimental Design. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics