Skip to main content

High-Field fMRI

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 119))

Abstract

Magnetic resonance imaging (MRI) allows detection of signal from constituent of biological tissues. Hydrogen (1H) is the most widely used element from which spectra and images are detected due to its abundance and high sensitivity manifested in its gyromagnetic ratio. The high contrast for soft tissue have afforded scientists invaluable information about brain structure and function. Among many parameters determining quality of MRI images, field strength is the most decisive one as it determines signal strength in fMRI images. Considering the low inherent sensitivity of fMRI, high magnetic field are the only way that activation contrast of neurofunctional studies could be increased. This is why there has been a relentless drive towards higher field strength in human imaging raising it up to 11.7 T to date. Technology of 7-T has become more widely available in scanners with fMRI capability. Development of many technologies such as multichannel RF coils, strong and fast gradients, simultaneous slice excitation, and brain-stimulation protocols have contributed to the expansion of fMRI as the method of choice for study of whole brain function. In this chapter, challenges of high-field fMRI in human studies are discussed among which signal to noise, susceptibility artifacts, multichannel RF coil designs are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lauterbur PC (1973) Image formation by induced local interactions: example employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  2. Hoult DI, Lauterbur PC (1979) The sensitivity of the zeumatographic experiment involving human samples. J Magn Reson 34:425–433

    CAS  Google Scholar 

  3. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sadek JR, Hammeke TA (2002) Functional neuroimaging in neurology and psychiatry. CNS Spectr 7:286–290, 295–299

    Article  PubMed  Google Scholar 

  5. Yacoub E, Van De Moortele PF, Shmuel A, Uğurbil K (2005) Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. Neuroimage 24:738–750

    Article  PubMed  Google Scholar 

  6. Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Vaughan JT, Merkle H, Kim SG (2002) High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 48:589–593

    Article  PubMed  Google Scholar 

  7. Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele PF, Hu X, Ugurbil K (2002) Perfusion-based high-resolution functional imaging in the human brain at 7 Tesla. Magn Reson Med 47:903–911

    Article  PubMed  Google Scholar 

  8. Uğurbil K, Hu X, Chen W, Zhu XH, Kim SG, Georgopoulos A (1999) Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354:1195–1213

    Article  PubMed  PubMed Central  Google Scholar 

  9. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 12(453):869–878

    Article  Google Scholar 

  10. Goense JB, Zappe AC, Logothetis NK (2007) High-resolution fMRI of macaque V1. Magn Reson Imaging 25:740–747

    Article  PubMed  Google Scholar 

  11. Shulman RD (2001) Functional imaging studies: linking mind and basic neuroscience. Am J Psychiatry 158:11–20

    Article  CAS  PubMed  Google Scholar 

  12. Bloch F (1946) Nuclear induction. Phys Rev 7:460–473

    Article  Google Scholar 

  13. Pourcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  Google Scholar 

  14. Hoult DI, Richards RE (1976) The signal-to-noise ratio of nuclear magnetic resonance experiment. J Magn Reson 24:71–85

    Google Scholar 

  15. Tropp J (1989) The theory of the bird-cage resonator. J Magn Reson 82:51–62

    Google Scholar 

  16. Bloembergen PEM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–746

    Article  CAS  Google Scholar 

  17. Peters AM, Brookes MJ, Hoogenraad FG, Gowland PA, Francis ST, Morris PG, Bowtell R (2007) T2* measurements in human brain at 1.5, 3 and 7 T. Magn Reson Imaging 25:748–753

    Article  PubMed  Google Scholar 

  18. Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in the human brain at 3.0 Tesla. J Magn Reson Imaging 9:531–538

    Article  CAS  PubMed  Google Scholar 

  19. Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, Pezzoli G (1999) T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology 211:489–495

    Article  CAS  PubMed  Google Scholar 

  20. Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A (2008) Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 40:148–159

    Article  PubMed  Google Scholar 

  21. Wright PJ, Mougin OE, Totman JJ, Peters AM, Brookes MJ, Coxon R, Morris PE, Clemence M, Francis ST, Bowtell RW, Gowland PA (2008) Water proton T (1) measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA 21:121–130

    Article  CAS  PubMed  Google Scholar 

  22. Kim SG, Ugurbil K (2003) High-resolution functional magnetic resonance imaging of the animal brain. Methods 30:28–41

    Article  CAS  PubMed  Google Scholar 

  23. Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    Article  CAS  PubMed  Google Scholar 

  24. Kim SG, Fukuda M (2008) Lessons from fMRI about mapping cortical columns. Neuroscientist 14:287–299

    Article  PubMed  Google Scholar 

  25. Yacoub E, Shmuel A, Logothetis N, Uğurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 37:1161–1177

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594

    Article  CAS  PubMed  Google Scholar 

  27. Mansfield P, Pykett IL, Morris PG (1978) Human whole body line-scan imaging by NMR. Br J Radiol 51:921–922

    Article  CAS  PubMed  Google Scholar 

  28. Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640

    Article  CAS  PubMed  Google Scholar 

  29. Goense JB, Ku SP, Merkle H, Tolias AS, Logothetis NK (2008) fMRI of the temporal lobe of the awake monkey at 7 T. Neuroimage 39:1081–1093

    Article  PubMed  Google Scholar 

  30. Farzaneh F, Riederer SJ, Pelc NJ (1990) Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 14:123–139

    Article  CAS  PubMed  Google Scholar 

  31. Yang QX, Smith MB, Briggs RW, Rycyna RE (1999) Microimaging at 14 Tesla using GESEPI for removal of magnetic susceptibility artifacts in T(2)(*)-weighted image contrast. J Magn Reson 141:1–6

    Article  PubMed  Google Scholar 

  32. Yang QX, Wang J, Smith MB, Meadowcroft M, Sun X, Eslinger PJ, Golay X (2004) Reduction of magnetic field inhomogeneity artifacts in echo planar imaging with SENSE and GESEPI at high field. Magn Reson Med 52:1418–1423

    Article  PubMed  Google Scholar 

  33. Chen NK, Wyrwicz AM (2004) Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 51:1247–1253

    Article  PubMed  Google Scholar 

  34. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850

    Article  CAS  PubMed  Google Scholar 

  35. Callaghan PT (1990) Susceptibility-limited resolution in nuclear magnetic resonance microscopy. J Magn Reson 87:304–318

    Google Scholar 

  36. Kangarlu A, Bourekas EC, Ray-Chaudhury A, Rammohan KW (2007) Cerebral cortical lesions in multiple sclerosis detected by MR imaging at 8 Tesla. AJNR Am J Neuroradiol 28:262–266

    CAS  PubMed  Google Scholar 

  37. Filippi M, Rocca MA (2007) Conventional MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):3S–9S

    Article  PubMed  Google Scholar 

  38. Fazekas F, Soelberg-Sorensen P, Comi G, Filippi M (2007) MRI to monitor treatment efficacy in multiple sclerosis. J Neuroimaging 17(Suppl 1):50S–55S

    Article  PubMed  Google Scholar 

  39. Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille PM (1999) High resolution MRI of the deep brain vascular anatomy at 8 Tesla: susceptibility-based enhancement of the venous structures. J Comput Assist Tomogr 23:857–866

    Article  CAS  PubMed  Google Scholar 

  40. Bourekas EC, Christoforidis GA, Abduljalil AM, Kangarlu A, Chakeres DW, Spigos DG, Robitaille PM (1999) High resolution MRI of the deep gray nuclei at 8 Tesla. J Comput Assist Tomogr 23:867–874

    Article  CAS  PubMed  Google Scholar 

  41. Davis TL, Kwong KK, Weisskopff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism (hypercapniaycerebrovascular reactivity). Proc Natl Acad Sci U S A 95:1834–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Ugurbil K, Hu X (2001) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14:408–412

    Article  CAS  PubMed  Google Scholar 

  43. Krüger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46:631–637

    Article  PubMed  Google Scholar 

  44. Wang SJ, Luo LM, Liang XY, Gui ZG, Chen CX (2005) Estimation and removal of physiological noise from undersampled multi-slice fMRI data in image space. IEEE EMBS 27:1371–1373

    Google Scholar 

  45. Hyde JS, Biswal BB, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46:114–125

    Article  CAS  PubMed  Google Scholar 

  46. Glover GH, Krüger G (2002) Optimum voxel size in BOLD fMRI. Proc Int Soc Magn Reson Med 10:1395

    Google Scholar 

  47. Mountscale VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    Article  Google Scholar 

  48. Triantafylloua C, Hogea RD, Wald LL (2006) Effect of spatial smoothing on physiological noise in high-resolution fMRI. Neuroimage 32:551–557

    Article  Google Scholar 

  49. Duong TQ, Kim DS, Ugurbil K, Kim SG (2001) Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci U S A 98:10904–10909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of isoorientation columns by fMRI. Nat Neurosci 3:164–169

    Article  CAS  PubMed  Google Scholar 

  51. Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8:80–85

    Article  CAS  PubMed  Google Scholar 

  52. Speck O, Stadler J, Zaitsev M (2008) High resolution single-shot EPI at 7T. MAGMA Magn Reson Mater in Phys Biol Med 21:73–86

    Article  Google Scholar 

  53. Baertlein BA, Ozbay O, Ibrahim T, Lee R, Yu Y, Kangarlu A, Robitaille PM (2000) Theoretical model for an MRI radio frequency resonator. IEEE Trans Biomed Eng 47:535–546

    Article  CAS  PubMed  Google Scholar 

  54. Ibrahim TS, Lee R, Baertlein BA, Kangarlu A, Robitaille PL (2000) Application of finite difference time domain method for the design of birdcage RF head coils using multi-port excitations. Magn Reson Imaging 18:733–742

    Article  CAS  PubMed  Google Scholar 

  55. Ibrahim TS, Kangarlu A, Chakeress DW (2005) Design and performance issues of RF coils utilized in ultra high field MRI: experimental and numerical evaluations. IEEE Trans Biomed Eng 52:1278–1284

    Article  PubMed  Google Scholar 

  56. Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PM (1999) Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 23:821–831

    Article  CAS  PubMed  Google Scholar 

  57. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  58. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  CAS  PubMed  Google Scholar 

  59. Katscher U, Börnert P, Leussler C, van den Brink JS (2003) Transmit SENSE. Magn Reson Med 49:144–150

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alayar Kangarlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kangarlu, A. (2016). High-Field fMRI. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics