Skip to main content

fMRI in Cerebrovascular Disorders

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 119))

Abstract

Stroke is a major cause of long-term disability worldwide. One of the key factors underpinning recovery of function is reorganization of surviving neural networks. Noninvasive techniques such as fMRI allow this reorganization to be studied in humans. However, the design of experiments involving patients with impairment requires careful consideration and is often constrained. Difficulty with some tasks can lead to a number of performance confounds, and so tasks and task parameters that avoid or minimize this should be selected. Furthermore, when studying patients with cerebrovascular disease, it is important to consider the possibility that the blood oxygen level-dependent signal may be altered and affect interpretation of results. Despite these potential problems, careful experimental design can provide real insights into system-level reorganization after stroke and how it is related to functional recovery. Currently, results suggest that functionally relevant reorganization does occur in cerebral networks in human stroke patients. For example, it is apparent that initial attempts to move a paretic limb following stroke are associated with widespread activity within the distributed motor system in both cerebral hemispheres. This reliance on nonprimary motor output pathways is unlikely to support full recovery, but improved efficiency of the surviving networks is associated with behavioral gains. This reorganization can only occur in structurally and functionally intact brain regions. Understanding the dynamic process of system-level reorganization will allow greater understanding of the mechanisms of recovery and potentially improve our ability to deliver effective restorative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman C, Rice D, Sung HY (1996) Persons with chronic conditions. Their prevalence and costs. JAMA 276(18):1473–1479

    Article  CAS  PubMed  Google Scholar 

  2. Office of Population Censuses and Surveys (1988) OPCS surveys of disability in Great Britain. I. The prevalence of disability among adults. HMSO, London

    Google Scholar 

  3. Wade DT, Hewer RL (1987) Epidemiology of some neurological diseases with special reference to work load on the NHS. Int Rehabil Med 8(3):129–137

    Article  CAS  PubMed  Google Scholar 

  4. Wade DT (1989) Measuring arm impairment and disability after stroke. Int Disabil Stud 11(2):89–92

    Article  CAS  PubMed  Google Scholar 

  5. Nichols-Larsen DS, Clark PC, Zeringue A, Greenspan A, Blanton S (2005) Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 36(7):1480–1484

    Article  PubMed  Google Scholar 

  6. Wyller TB, Sveen U, Sodring KM, Pettersen AM, Bautz-Holter E (1997) Subjective wellbeing one year after stroke. Clin Rehabil 11(2):139–145

    Article  CAS  PubMed  Google Scholar 

  7. Stroke Unit Trialists’ Collaboration (2000) Organised inpatient (stroke unit) care for stroke (Cochrane Review). The Cochrane Library, Issue 2. Oxford: Update Software

    Google Scholar 

  8. Ward NS, Cohen LG (2004) Mechanisms underlying recovery of motor function after stroke. Arch Neurol 61(12):1844–1848

    Article  PubMed  PubMed Central  Google Scholar 

  9. The Academy of Medical Sciences (2004) Restoring neurological function: putting the neurosciences to work in neurorehabilitation. Academy of Medical Sciences, London

    Google Scholar 

  10. Loubinoux I, Carel C, Pariente J, Dechaumont S, Albucher JF, Marque P et al (2003) Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 20(4):2166–2180

    Article  PubMed  Google Scholar 

  11. Tombari D, Loubinoux I, Pariente J, Gerdelat A, Albucher JF, Tardy J et al (2004) A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage 23(3):827–839

    Article  PubMed  Google Scholar 

  12. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2006) Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: an FMRI study. Neurorehabil Neural Repair 20(3):398–405

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee A, Kannan V, Hillis AE (2006) The contribution of neuroimaging to the study of language and aphasia. Neuropsychol Rev 16(4):171–183

    Article  PubMed  Google Scholar 

  14. Price CJ, Crinion J (2005) The latest on functional imaging studies of aphasic stroke. Curr Opin Neurol 18(4):429–434

    Article  PubMed  Google Scholar 

  15. Wise RJ (2003) Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br Med Bull 65:95–119

    Article  PubMed  Google Scholar 

  16. Buxton RB (2002) An introduction to functional magnetic resonance imaging: principles and techniques. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354(1387):1155–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283(5401):496–497

    Article  CAS  PubMed  Google Scholar 

  19. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360

    Article  CAS  PubMed  Google Scholar 

  20. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25(12):621–625

    Article  CAS  PubMed  Google Scholar 

  21. Friston KJ, Josephs O, Rees G, Turner R (1998) Nonlinear event-related responses in fMRI. Magn Reson Med 39(1):41–52

    Article  CAS  PubMed  Google Scholar 

  22. Newton J, Sunderland A, Butterworth SE, Peters AM, Peck KK, Gowland PA (2002) A pilot study of event-related functional magnetic resonance imaging of monitored wrist movements in patients with partial recovery. Stroke 33(12):2881–2887

    Article  CAS  PubMed  Google Scholar 

  23. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2001) Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization? Stroke 32(5):1134–1139

    Article  CAS  PubMed  Google Scholar 

  24. Carusone LM, Srinivasan J, Gitelman DR, Mesulam MM, Parrish TB (2002) Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging. AJNR Am J Neuroradiol 23(7):1222–1228

    PubMed  Google Scholar 

  25. Hamzei F, Knab R, Weiller C, Rother J (2003) The influence of extra- and intracranial artery disease on the BOLD signal in fMRI. Neuroimage 20(2):1393–1399

    Article  PubMed  Google Scholar 

  26. Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M et al (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 127(Pt 1):99–110

    Article  CAS  PubMed  Google Scholar 

  27. Rother J, Knab R, Hamzei F, Fiehler J, Reichenbach JR, Buchel C et al (2002) Negative dip in BOLD fMRI is caused by blood flow-oxygen consumption uncoupling in humans. Neuroimage 15(1):98–102

    Article  PubMed  Google Scholar 

  28. Krainik A, Hund-Georgiadis M, Zysset S, von Cramon DY (2005) Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke 36(6):1146–1152

    Article  PubMed  Google Scholar 

  29. Murata Y, Sakatani K, Hoshino T, Fujiwara N, Kano T, Nakamura S et al (2006) Effects of cerebral ischemia on evoked cerebral blood oxygenation responses and BOLD contrast functional MRI in stroke patients. Stroke 37(10):2514–2520

    Article  PubMed  Google Scholar 

  30. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 126(Pt 6):1430–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ et al (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129(Pt 3):809–819

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, Thompson AJ et al (2007) The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci 25(6):1865–1873

    Article  PubMed  PubMed Central  Google Scholar 

  33. D’Esposito M, Zarahn E, Aguirre GK, Rypma B (1999) The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 10(1):6–14

    Article  PubMed  Google Scholar 

  34. Ward NS, Swayne OB, Newton JM (2008) Age-dependent changes in the neural correlates of force modulation: an fMRI study. Neurobiol Aging 29(9):1434–1446

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pollmann S, Dove A, Yves von Cramon D, Wiggins CJ (2000) Event-related fMRI: comparison of conditions with varying BOLD overlap. Hum Brain Mapp 9(1):26–37

    Article  CAS  PubMed  Google Scholar 

  36. Wager TD, Vazquez A, Hernandez L, Noll DC (2005) Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. Neuroimage 25(1):206–218

    Article  PubMed  Google Scholar 

  37. Kim JA, Eliassen JC, Sanes JN (2005) Movement quantity and frequency coding in human motor areas. J Neurophysiol 94(4):2504–2511

    Article  PubMed  Google Scholar 

  38. Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KM (1998) Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29(1):112–122

    Article  CAS  PubMed  Google Scholar 

  39. Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29(1):63–71

    Article  CAS  PubMed  Google Scholar 

  40. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK et al (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28(12):2518–2527

    Article  CAS  PubMed  Google Scholar 

  41. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31(5):463–472

    Article  CAS  PubMed  Google Scholar 

  42. Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 33(2):181–189

    Article  CAS  PubMed  Google Scholar 

  43. Strick PL (1988) Anatomical organization of multiple motor areas in the frontal lobe: implications for recovery of function. Adv Neurol 47:293–312

    CAS  PubMed  Google Scholar 

  44. Porter R, Lemon RN (1993) Corticospinal function and voluntary movement. Oxford University Press, Oxford, UK

    Google Scholar 

  45. Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16(20):6513–6525

    CAS  PubMed  Google Scholar 

  46. Rouiller EM, Moret V, Tanne J, Boussaoud D (1996) Evidence for direct connections between the hand region of the supplementary motor area and cervical motoneurons in the macaque monkey. Eur J Neurosci 8(5):1055–1059

    Article  CAS  PubMed  Google Scholar 

  47. Calautti C, Leroy F, Guincestre JY, Baron JC (2001) Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke 32(11):2534–2542

    Article  CAS  PubMed  Google Scholar 

  48. Calautti C, Leroy F, Guincestre JY, Baron JC (2003) Displacement of primary sensorimotor cortex activation after subcortical stroke: a longitudinal PET study with clinical correlation. Neuroimage 19(4):1650–1654

    Article  PubMed  Google Scholar 

  49. Cramer SC, Shah R, Juranek J, Crafton KR, Le V (2006) Activity in the peri-infarct rim in relation to recovery from stroke. Stroke 37(1):111–115

    Article  PubMed  Google Scholar 

  50. Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L et al (2002) Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 33(6):1610–1617

    Article  CAS  PubMed  Google Scholar 

  51. Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 99(22):14518–14523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seitz RJ, Hoflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ (1998) Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 55(8):1081–1088

    Article  CAS  PubMed  Google Scholar 

  53. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2004) The influence of time after stroke on brain activations during a motor task. Ann Neurol 55(6):829–834

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dancause N, Barbay S, Frost SB, Plautz EJ, Stowe AM, Friel KM et al (2006) Ipsilateral connections of the ventral premotor cortex in a new world primate. J Comp Neurol 495(4):374–390

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dancause N, Barbay S, Frost SB, Mahnken JD, Nudo RJ (2007) Interhemispheric connections of the ventral premotor cortex in a new world primate. J Comp Neurol 505(6):701–715

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11(3):667–689

    CAS  PubMed  Google Scholar 

  57. He SQ, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13(3):952–980

    CAS  PubMed  Google Scholar 

  58. He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15(5 Pt 1):3284–3306

    CAS  PubMed  Google Scholar 

  59. Boudrias MH, Belhaj-Saif A, Park MC, Cheney PD (2006) Contrasting properties of motor output from the supplementary motor area and primary motor cortex in rhesus macaques. Cereb Cortex 16(5):632–638

    Article  PubMed  Google Scholar 

  60. Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12(3):281–296

    Article  CAS  PubMed  Google Scholar 

  61. Baker SN, Zaaimi B, Fisher KM, Edgley SA, Soteropoulos DS (2015) Pathways mediating functional recovery. Prog Brain Res 218:389–412

    Article  PubMed  Google Scholar 

  62. Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D et al (1995) Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 74(2):802–815

    CAS  PubMed  Google Scholar 

  63. Thickbroom GW, Phillips BA, Morris I, Byrnes ML, Sacco P, Mastaglia FL (1999) Differences in functional magnetic resonance imaging of sensorimotor cortex during static and dynamic finger flexion. Exp Brain Res 126(3):431–438

    Article  CAS  PubMed  Google Scholar 

  64. Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126(Pt 4):873–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG (2004) Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127(Pt 4):747–758

    Article  PubMed  Google Scholar 

  66. Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C (2006) The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 26(22):6096–6102

    Article  CAS  PubMed  Google Scholar 

  67. Grefkes C, Fink GR (2014) Connectivity-based approaches in stroke and recovery of function. Lancet Neurol 13(2):206–216

    Article  PubMed  Google Scholar 

  68. Carter AR, Patel KR, Astafiev SV, Snyder AZ, Rengachary J, Strube MJ et al (2012) Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil Neural Repair 26(1):7–19

    Article  PubMed  Google Scholar 

  69. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ et al (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67(3):365–375

    PubMed  PubMed Central  Google Scholar 

  70. Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Küst J, Karbe H et al (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63(2):236–246

    Article  PubMed  Google Scholar 

  71. Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N et al (2010) The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci 30(36):11926–11937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zemke AC, Heagerty PJ, Lee C, Cramer SC (2003) Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 34(5):e23–e28

    Article  PubMed  Google Scholar 

  73. Crafton KR, Mark AN, Cramer SC (2003) Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain 126(Pt 7):1650–1659

    Article  PubMed  Google Scholar 

  74. Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL (2000) Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31(3):656–661

    Article  CAS  PubMed  Google Scholar 

  75. Small SL, Hlustik P, Noll DC, Genovese C, Solodkin A (2002) Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain 125(Pt 7):1544–1557

    Article  CAS  PubMed  Google Scholar 

  76. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126(Pt 11):2476–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R et al (2006) BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 9(6):735–737

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick S. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ward, N.S. (2016). fMRI in Cerebrovascular Disorders. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics