Skip to main content

Application of fMRI to Multiple Sclerosis and Other White Matter Disorders

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 119))

  • 2432 Accesses

Abstract

The variable effectiveness of reparative and recovery mechanisms following tissue damage is among the factors that might contribute to explain, at least partially, the paucity of the correlation between clinical and magnetic resonance imaging (MRI) findings in patients with white matter disorders. Among the mechanisms of recovery, brain plasticity is likely to be one of the most important with several possible different substrates (including increased axonal expression of sodium channels, synaptic changes, increased recruitment of parallel existing pathways or “latent” connections, and reorganization of distant sites). The application of fMRI has shown that plastic cortical changes do occur after white matter injury of different etiology, that such changes are related to the extent of white matter damage, and that they can contribute in limiting the clinical consequences of brain damage. Conversely, the failure or exhaustion of the adaptive properties of the cerebral cortex might be among the factors responsible for the accumulation of “fixed” neurological deficits in patients with white matter disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Filippi M, Rocca MA (2004) Magnetization transfer magnetic resonance imaging in the assessment of neurological diseases. J Neuroimaging 14(4):303–313

    Article  PubMed  Google Scholar 

  2. Filippi M, Rocca MA, Comi G (2003) The use of quantitative magnetic-resonance-based techniques to monitor the evolution of multiple sclerosis. Lancet Neurol 2(6):337–346

    Article  CAS  PubMed  Google Scholar 

  3. Hesselink JR (2006) Differential diagnostic approach to MR imaging of white matter diseases. Top Magn Reson Imaging 17:243–263

    Article  PubMed  Google Scholar 

  4. Rocca MA, Filippi M (2006) Functional MRI to study brain plasticity in clinical neurology. Neurol Sci 27(Suppl 1):S24–S26

    Article  PubMed  Google Scholar 

  5. Rocca MA, Filippi M (2007) Functional MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):36S–41S

    Article  PubMed  Google Scholar 

  6. Waxman SG (1998) Demyelinating diseases—new pathological insights, new therapeutic targets. N Engl J Med 338(5):323–325

    CAS  PubMed  Google Scholar 

  7. Clanet M, Berry I, Boulanouar K (1997) Functional imaging in multiple sclerosis. Int MS J 4:26–32

    Google Scholar 

  8. Rombouts SA et al (1998) Visual activation patterns in patients with optic neuritis: an fMRI pilot study. Neurology 50(6):1896–1899

    Article  CAS  PubMed  Google Scholar 

  9. Lee M et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47(5):606–613

    Article  CAS  PubMed  Google Scholar 

  10. Reddy H et al (2000) Relating axonal injury to functional recovery in MS. Neurology 54(1):236–239

    Article  CAS  PubMed  Google Scholar 

  11. Reddy H et al (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123(Pt 11):2314–2320

    Article  PubMed  Google Scholar 

  12. Werring DJ et al (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 68(4):441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Langkilde AR et al (2002) Functional MRI of the visual cortex and visual testing in patients with previous optic neuritis. Eur J Neurol 9(3):277–286

    Article  CAS  PubMed  Google Scholar 

  14. Toosy AT et al (2002) Functional magnetic resonance imaging of the cortical response to photic stimulation in humans following optic neuritis recovery. Neurosci Lett 330(3):255–259

    Article  CAS  PubMed  Google Scholar 

  15. Russ MO et al (2002) Functional magnetic resonance imaging in acute unilateral optic neuritis. J Neuroimaging 12(4):339–350

    Article  PubMed  Google Scholar 

  16. Toosy AT et al (2005) Adaptive cortical plasticity in higher visual areas after acute optic neuritis. Ann Neurol 57(5):622–633

    Article  PubMed  Google Scholar 

  17. Levin N et al (2006) Normal and abnormal fMRI activation patterns in the visual cortex after recovery from optic neuritis. Neuroimage 33(4):1161–1168

    Article  PubMed  Google Scholar 

  18. Korsholm K et al (2007) Recovery from optic neuritis: an ROI-based analysis of LGN and visual cortical areas. Brain 130(Pt 5):1244–1253

    Article  PubMed  Google Scholar 

  19. Jenkins T et al (2010) Dissecting structure-function interactions in acute optic neuritis to investigate neuroplasticity. Hum Brain Mapp 31(2):276–286

    PubMed  Google Scholar 

  20. Jenkins TM et al (2010) Neuroplasticity predicts outcome of optic neuritis independent of tissue damage. Ann Neurol 67(1):99–113

    Article  PubMed  Google Scholar 

  21. Filippi M et al (2002) Correlations between structural CNS damage and functional MRI changes in primary progressive MS. Neuroimage 15(3):537–546

    Article  CAS  PubMed  Google Scholar 

  22. Rocca MA et al (2002) Adaptive functional changes in the cerebral cortex of patients with nondisabling multiple sclerosis correlate with the extent of brain structural damage. Ann Neurol 51(3):330–339

    Article  PubMed  Google Scholar 

  23. Rocca MA et al (2003) Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 18(4):847–855

    Article  PubMed  Google Scholar 

  24. Rocca MA et al (2003) A functional magnetic resonance imaging study of patients with secondary progressive multiple sclerosis. Neuroimage 19(4):1770–1777

    Article  PubMed  Google Scholar 

  25. Rocca MA et al (2003) Functional cortical changes in patients with multiple sclerosis and nonspecific findings on conventional magnetic resonance imaging scans of the brain. Neuroimage 19(3):826–836

    Article  PubMed  Google Scholar 

  26. Reddy H et al (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125(Pt 12):2646–2657

    Article  CAS  PubMed  Google Scholar 

  27. Filippi M et al (2004) Simple and complex movement-associated functional MRI changes in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Hum Brain Mapp 21(2):108–117

    Article  PubMed  Google Scholar 

  28. Rocca MA et al (2005) Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 4(10):618–626

    Article  PubMed  Google Scholar 

  29. Pantano P et al (2002) Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 125(Pt 7):1607–1615

    Article  PubMed  Google Scholar 

  30. Pantano P et al (2002) Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis. Neuroimage 17(4):1837–1843

    Article  PubMed  Google Scholar 

  31. Rocca MA et al (2004) Pyramidal tract lesions and movement-associated cortical recruitment in patients with MS. Neuroimage 23(1):141–147

    Article  PubMed  Google Scholar 

  32. Lowe MJ et al (2002) Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224(1):184–192

    Article  PubMed  Google Scholar 

  33. Rocca MA et al (2002) Evidence for widespread movement-associated functional MRI changes in patients with PPMS. Neurology 58(6):866–872

    Article  CAS  PubMed  Google Scholar 

  34. Rocca MA et al (2003) Cord damage elicits brain functional reorganization after a single episode of myelitis. Neurology 61(8):1078–1085

    Article  CAS  PubMed  Google Scholar 

  35. Rocca MA et al (2004) A functional MRI study of movement-associated cortical changes in patients with Devic’s neuromyelitis optica. Neuroimage 21(3):1061–1068

    Article  CAS  PubMed  Google Scholar 

  36. Rocca MA et al (2005) A widespread pattern of cortical activations in patients at presentation with clinically isolated symptoms is associated with evolution to definite multiple sclerosis. AJNR Am J Neuroradiol 26(5):1136–1139

    PubMed  Google Scholar 

  37. Rocca MA et al (2007) fMRI changes in relapsing-remitting multiple sclerosis patients complaining of fatigue after IFNbeta-1a injection. Hum Brain Mapp 28(5):373–382

    Article  PubMed  Google Scholar 

  38. Mezzapesa DM et al (2008) Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Hum Brain Mapp 29(5):562–573

    Article  PubMed  Google Scholar 

  39. Rocca MA et al (2008) The “mirror-neuron system” in MS: a 3 tesla fMRI study. Neurology 70(4):255–262

    Article  CAS  PubMed  Google Scholar 

  40. Rocca MA et al (2007) Altered functional and structural connectivities in patients with MS: a 3-T study. Neurology 69(23):2136–2145

    Article  CAS  PubMed  Google Scholar 

  41. Filippi M et al (2004) A functional MRI study of cortical activations associated with object manipulation in patients with MS. Neuroimage 21(3):1147–1154

    Article  PubMed  Google Scholar 

  42. Cerasa A et al (2006) Adaptive cortical changes and the functional correlates of visuo-motor integration in relapsing-remitting multiple sclerosis. Brain Res Bull 69(6):597–605

    Article  PubMed  Google Scholar 

  43. Calautti C, Baron J-C (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34(6):1553–1566

    Article  PubMed  Google Scholar 

  44. Ciccarelli O et al (2006) Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis. J Neurol 253(7):882–891

    Article  CAS  PubMed  Google Scholar 

  45. Rocca MA et al (2010) Preserved brain adaptive properties in patients with benign multiple sclerosis. Neurology 74(2):142–149

    Article  CAS  PubMed  Google Scholar 

  46. Petsas N et al (2013) Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis. PLoS One 8(6):e65315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agosta F et al (2008) Tactile-associated recruitment of the cervical cord is altered in patients with multiple sclerosis. Neuroimage 39(4):1542–1548

    Article  PubMed  Google Scholar 

  48. Agosta F et al (2008) Evidence for enhanced functional activity of cervical cord in relapsing multiple sclerosis. Magn Reson Med 59(5):1035–1042

    Article  CAS  PubMed  Google Scholar 

  49. Valsasina P et al (2010) Cervical cord functional MRI changes in relapse-onset MS patients. J Neurol Neurosurg Psychiatry 81(4):405–408

    Article  CAS  PubMed  Google Scholar 

  50. Valsasina P et al (2012) Cervical cord fMRI abnormalities differ between the progressive forms of multiple sclerosis. Hum Brain Mapp 33(9):2072–2080

    Article  PubMed  Google Scholar 

  51. Rocca MA et al (2012) Abnormal cervical cord function contributes to fatigue in multiple sclerosis. Mult Scler 18(11):1552–1559

    Article  CAS  PubMed  Google Scholar 

  52. Staffen W et al (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 125(Pt 6):1275–1282

    Article  CAS  PubMed  Google Scholar 

  53. Au Duong MV et al (2005) Altered functional connectivity related to white matter changes inside the working memory network at the very early stage of MS. J Cereb Blood Flow Metab 25(10):1245–1253

    Article  PubMed  Google Scholar 

  54. Au Duong MV et al (2005) Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis. Neuroimage 24(2):533–538

    Article  CAS  PubMed  Google Scholar 

  55. Audoin B et al (2003) Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp 20(2):51–58

    Article  PubMed  Google Scholar 

  56. Audoin B et al (2005) Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Hum Brain Mapp 24(3):216–228

    Article  PubMed  Google Scholar 

  57. Hillary FG et al (2003) An investigation of working memory rehearsal in multiple sclerosis using fMRI. J Clin Exp Neuropsychol 25(7):965–978

    Article  CAS  PubMed  Google Scholar 

  58. Parry AM et al (2003) Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 126(Pt 12):2750–2760

    Article  PubMed  Google Scholar 

  59. Penner IK et al (2003) Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. J Neurol 250(4):461–472

    Article  PubMed  Google Scholar 

  60. Mainero C et al (2004) fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage 21(3):858–867

    Article  PubMed  Google Scholar 

  61. Sweet LH et al (2004) Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging 14(2):150–157

    Article  PubMed  Google Scholar 

  62. Sweet LH et al (2006) Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Hum Brain Mapp 27(1):28–36

    Article  PubMed  Google Scholar 

  63. Wishart HA et al (2004) Brain activation patterns associated with working memory in relapsing-remitting MS. Neurology 62(2):234–238

    Article  CAS  PubMed  Google Scholar 

  64. Chiaravalloti N et al (2005) Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI. J Clin Exp Neuropsychol 27(1):33–54

    Article  PubMed  Google Scholar 

  65. Cader S et al (2006) Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 129(Pt 2):527–537

    PubMed  Google Scholar 

  66. Li Y et al (2004) Differential cerebellar activation on functional magnetic resonance imaging during working memory performance in persons with multiple sclerosis. Arch Phys Med Rehabil 85(4):635–639

    Article  PubMed  Google Scholar 

  67. Rocca MA et al (2009) Structural and functional MRI correlates of Stroop control in benign MS. Hum Brain Mapp 30(1):276–290

    Article  PubMed  Google Scholar 

  68. Lazeron RHC et al (2004) An fMRI study of planning-related brain activity in patients with moderately advanced multiple sclerosis. Mult Scler 10(5):549–555

    Article  PubMed  Google Scholar 

  69. Comi G et al (2001) Clinical and MRI assessment of brain damage in MS. Neurol Sci 22(Suppl 2):123–127

    Article  Google Scholar 

  70. Forn C et al (2012) Functional magnetic resonance imaging correlates of cognitive performance in patients with a clinically isolated syndrome suggestive of multiple sclerosis at presentation: an activation and connectivity study. Mult Scler 18(2):153–163

    Article  CAS  PubMed  Google Scholar 

  71. Cerasa A et al (2010) The effects of BDNF Val66Met polymorphism on brain function in controls and patients with multiple sclerosis: an imaging genetic study. Behav Brain Res 207(2):377–386

    Article  CAS  PubMed  Google Scholar 

  72. Bobholz JA et al (2006) fMRI study of episodic memory in relapsing-remitting MS: correlation with T2 lesion volume. Neurology 67(9):1640–1645

    Article  CAS  PubMed  Google Scholar 

  73. Jehna M et al (2011) Cognitively preserved MS patients demonstrate functional differences in processing neutral and emotional faces. Brain Imaging Behav 5(4):241–251

    Article  PubMed  Google Scholar 

  74. Rocca MA et al (2012) Differential cerebellar functional interactions during an interference task across multiple sclerosis phenotypes. Radiology 265(3):864–873

    Article  PubMed  Google Scholar 

  75. Lenzi D et al (2007) Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapp 28(7):636–644

    Article  PubMed  Google Scholar 

  76. Manson SC et al (2006) Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus callosum atrophy. Exp Brain Res 174(4):728–733

    Article  PubMed  Google Scholar 

  77. Ceccarelli A et al (2010) Structural and functional magnetic resonance imaging correlates of motor network dysfunction in primary progressive multiple sclerosis. Eur J Neurosci 31(7):1273–1280

    Article  PubMed  Google Scholar 

  78. Filippi M et al (2002) Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 15(3):559–567

    Article  CAS  PubMed  Google Scholar 

  79. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090, discussion 1097–1099

    Article  PubMed  Google Scholar 

  80. Roosendaal SD et al (2010) Resting state networks change in clinically isolated syndrome. Brain 133(Pt 6):1612–1621

    Article  PubMed  Google Scholar 

  81. Rocca MA et al (2010) Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology 74(16):1252–1259

    Article  CAS  PubMed  Google Scholar 

  82. Bonavita S et al (2011) Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler 17(4):411–422

    Article  PubMed  Google Scholar 

  83. Loitfelder M et al (2012) Abnormalities of resting state functional connectivity are related to sustained attention deficits in MS. PLoS One 7(8):e42862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hawellek DJ et al (2011) Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc Natl Acad Sci U S A 108(47):19066–19071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Faivre A et al (2012) Assessing brain connectivity at rest is clinically relevant in early multiple sclerosis. Mult Scler 18(9):1251–1258

    Article  PubMed  Google Scholar 

  86. Schoonheim MM et al (2015) Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology 84(8):776–783

    Article  PubMed  Google Scholar 

  87. Rocca M et al (2012) Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology 79(14):1449–1457

    Article  PubMed  Google Scholar 

  88. Sumowski JF et al (2010) Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: functional magnetic resonance imaging evidence for cognitive reserve. Brain 133(Pt 2):362–374

    Article  PubMed  Google Scholar 

  89. Loitfelder M et al (2011) Reorganization in cognitive networks with progression of multiple sclerosis: insights from fMRI. Neurology 76(6):526–533

    Article  CAS  PubMed  Google Scholar 

  90. Tortorella C et al (2013) Load-dependent dysfunction of the putamen during attentional processing in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 19(9):1153–1160

    Article  CAS  PubMed  Google Scholar 

  91. Amann M et al (2011) Altered functional adaptation to attention and working memory tasks with increasing complexity in relapsing-remitting multiple sclerosis patients. Hum Brain Mapp 32(10):1704–1719

    Article  PubMed  Google Scholar 

  92. Rocca MA et al (2014) Functional correlates of cognitive dysfunction in multiple sclerosis: a multicenter fMRI Study. Hum Brain Mapp 35(12):5799–5814

    Article  PubMed  Google Scholar 

  93. Pantano P et al (2005) A longitudinal fMRI study on motor activity in patients with multiple sclerosis. Brain 128(Pt 9):2146–2153

    Article  PubMed  Google Scholar 

  94. Audoin B et al (2008) Efficiency of cognitive control recruitment in the very early stage of multiple sclerosis: a one-year fMRI follow-up study. Mult Scler 14(6):786–792

    Article  CAS  PubMed  Google Scholar 

  95. Loitfelder M et al (2014) Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis—insights from a longitudinal FMRI study. PLoS One 9(4):e93715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wegner C et al (2008) Relating functional changes during hand movement to clinical parameters in patients with multiple sclerosis in a multi-centre fMRI study. Eur J Neurol 15(2):113–122

    Article  CAS  PubMed  Google Scholar 

  97. Rocca MA et al (2009) Abnormal connectivity of the sensorimotor network in patients with MS: a multicenter fMRI study. Hum Brain Mapp 30(8):2412–2425

    Article  PubMed  Google Scholar 

  98. Mainero C et al (2004) Enhanced brain motor activity in patients with MS after a single dose of 3,4-diaminopyridine. Neurology 62(11):2044–2050

    Article  CAS  PubMed  Google Scholar 

  99. Cader S, Palace J, Matthews PM (2009) Cholinergic agonism alters cognitive processing and enhances brain functional connectivity in patients with multiple sclerosis. J Psychopharmacol 23(6):686–696

    Article  CAS  PubMed  Google Scholar 

  100. Tomassini V et al (2012) Relating brain damage to brain plasticity in patients with multiple sclerosis. Neurorehabil Neural Repair 26(6):581–593

    Article  PubMed  PubMed Central  Google Scholar 

  101. Filippi M et al (2012) Effects of cognitive rehabilitation on structural and functional MRI measures in multiple sclerosis: an explorative study. Radiology 262(3):932–940

    Article  PubMed  Google Scholar 

  102. Sastre-Garriga J et al (2011) A functional magnetic resonance proof of concept pilot trial of cognitive rehabilitation in multiple sclerosis. Mult Scler 17(4):457–467

    Article  CAS  PubMed  Google Scholar 

  103. Cerasa A et al (2013) Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: a randomized trial with fMRI correlates. Neurorehabil Neural Repair 27(4):284–295

    Article  PubMed  Google Scholar 

  104. Parisi L et al (2014) Changes of brain resting state functional connectivity predict the persistence of cognitive rehabilitation effects in patients with multiple sclerosis. Mult Scler 20(6):686–694

    Article  PubMed  Google Scholar 

  105. Liu Y et al (2011) Abnormal baseline brain activity in patients with neuromyelitis optica: a resting-state fMRI study. Eur J Radiol 80(2):407–411

    Article  PubMed  Google Scholar 

  106. Mikulis DJ et al (2002) Adaptation in the motor cortex following cervical spinal cord injury. Neurology 58(5):794–801

    Article  CAS  PubMed  Google Scholar 

  107. Curt A et al (2002) Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain 125(Pt 11):2567–2578

    Article  PubMed  Google Scholar 

  108. Sabbah P et al (2002) Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study. J Neurotrauma 19(1):53–60

    Article  CAS  PubMed  Google Scholar 

  109. Cramer SC et al (2001) Changes in motor cortex activation after recovery from spinal cord inflammation. Mult Scler 7(6):364–370

    Article  CAS  PubMed  Google Scholar 

  110. Rocca MA et al (2006) The level of spinal cord involvement influences the pattern of movement-associated cortical recruitment in patients with isolated myelitis. Neuroimage 30(3):879–884

    Article  PubMed  Google Scholar 

  111. Rocca MA et al (2006) An fMRI study of the motor system in patients with neuropsychiatric systemic lupus erythematosus. Neuroimage 30(2):478–484

    Article  PubMed  Google Scholar 

  112. Hadjikhani N et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A 98(8):4687–4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cao Y et al (1999) Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch Neurol 56(5):548–554

    Article  CAS  PubMed  Google Scholar 

  114. Lakhan SE, Avramut M, Tepper SJ (2013) Structural and functional neuroimaging in migraine: insights from 3 decades of research. Headache 53(1):46–66

    Article  PubMed  Google Scholar 

  115. Stankewitz A et al (2011) Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci 31(6):1937–1943

    Article  CAS  PubMed  Google Scholar 

  116. Tedeschi G et al (2013) The role of BOLD-fMRI in elucidating migraine pathophysiology. Neurol Sci 34(Suppl 1):S47–S50

    Article  PubMed  Google Scholar 

  117. Russo A et al (2012) Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol 259(9):1903–1912

    Article  PubMed  Google Scholar 

  118. Sprenger T, Borsook D (2012) Migraine changes the brain: neuroimaging makes its mark. Curr Opin Neurol 25(3):252–262

    Article  PubMed  PubMed Central  Google Scholar 

  119. Burstein R et al (2010) Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68(1):81–91

    Article  PubMed  PubMed Central  Google Scholar 

  120. Maizels M, Aurora S, Heinricher M (2012) Beyond neurovascular: migraine as a dysfunctional neurolimbic pain network. Headache 52(10):1553–1565

    Article  PubMed  Google Scholar 

  121. Chiapparini L et al (2010) Neuroimaging in chronic migraine. Neurol Sci 31(Suppl 1):S19–S22

    Article  PubMed  Google Scholar 

  122. Bhaskar S et al (2013) Recent progress in migraine pathophysiology: role of cortical spreading depression and magnetic resonance imaging. Eur J Neurosci 38(11):3540–3551

    Article  PubMed  Google Scholar 

  123. Antal A et al (2011) Differential activation of the middle-temporal complex to visual stimulation in migraineurs. Cephalalgia 31(3):338–345

    Article  PubMed  Google Scholar 

  124. Furman JM, Marcus DA, Balaban CD (2013) Vestibular migraine: clinical aspects and pathophysiology. Lancet Neurol 12(7):706–715

    Article  CAS  PubMed  Google Scholar 

  125. Sprenger T, Magon S (2013) Can functional magnetic resonance imaging at rest shed light on the pathophysiology of migraine? Headache 53(5):723–725

    Article  PubMed  Google Scholar 

  126. Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70(5):838–845

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tessitore A et al (2013) Disrupted default mode network connectivity in migraine without aura. J Headache Pain 14(1):89

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Filippi, M., Rocca, M.A. (2016). Application of fMRI to Multiple Sclerosis and Other White Matter Disorders. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics