Skip to main content

Analysis of the C. elegans Germline Stem Cell Pool

  • Protocol
  • First Online:
Germline Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1463))

Abstract

The Caenorhabditis elegans germline is an excellent model for studying the regulation of a pool of stem cells and progression of cells from a stem cell state to a differentiated state. At the tissue level, the germline is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated cells at the other. A simple mesenchymal niche caps the GSC region of the germline and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Downstream of Notch signaling, key regulators include novel LST-1 and SYGL-1 proteins and a network of RNA regulatory proteins. In this chapter we present methods for characterizing the C. elegans GSC pool and early germ cell differentiation. The methods include examination of the germline in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutants that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.

Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-1-4939-4017-2_1) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kershner A, Crittenden SL, Friend K, Sorensen EB, Porter DF, Kimble J (2013) Germline stem cells and their regulation in the nematode Caenorhabditis elegans. Adv Exp Med Biol 786:29–46. doi:10.1007/978-94-007-6621-1_3

    Article  CAS  PubMed  Google Scholar 

  2. Hansen D, Schedl T (2013) Stem cell proliferation versus meiotic fate decision in Caenorhabditis elegans. Adv Exp Med Biol 757:71–99. doi:10.1007/978-1-4614-4015-4_4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hubbard EJ, Korta DZ, Dalfo D (2013) Physiological control of germline development. Adv Exp Med Biol 757:101–131. doi:10.1007/978-1-4614-4015-4_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kimble J, Seidel H (2013) C. elegans germline stem cells and their niche. Stembook. doi:10.3824/stembook.1.95.1

  5. Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, Calof AL, Trumpp A, Oskarsson T (2012) What does the concept of the stem cell niche really mean today? BMC Biol 10:19. doi:10.1186/1741-7007-10-19

    Article  PubMed  PubMed Central  Google Scholar 

  6. Joshi PM, Riddle MR, Djabrayan NJ, Rothman JH (2010) Caenorhabditis elegans as a model for stem cell biology. Dev Dyn 239(5):1539–1554. doi:10.1002/dvdy.22296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kimble J (2011) Molecular regulation of the mitosis/meiosis decision in multicellular organisms. Cold Spring Harb Perspect Biol 3(8):a0002683. doi:10.1101/cshperspect.a002683

    Article  CAS  Google Scholar 

  8. Hubbard EJ (2007) Caenorhabditis elegans germ line: a model for stem cell biology. Dev Dyn 236(12):3343–3357. doi:10.1002/dvdy.21335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cinquin O (2009) Purpose and regulation of stem cells: a systems-biology view from the Caenorhabditis elegans germ line. J Pathol 217(2):186–198. doi:10.1002/path.2481

    Article  PubMed  PubMed Central  Google Scholar 

  10. Biedermann B, Hotz HR, Ciosk R (2010) The Quaking family of RNA-binding proteins: coordinators of the cell cycle and differentiation. Cell Cycle 9(10):1929–1933

    Article  CAS  PubMed  Google Scholar 

  11. Kipreos ET (2005) C. elegans cell cycles: invariance and stem cell divisions. Nat Rev Mol Cell Biol 6(10):766–776

    Article  CAS  PubMed  Google Scholar 

  12. Waters KA, Reinke V (2011) Extrinsic and intrinsic control of germ cell proliferation in Caenorhabditis elegans. Mol Reprod Dev 78(3):151–160. doi:10.1002/mrd.21289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kimble J, Crittenden SL (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23:405–433. doi:10.1146/annurev.cellbio.23.090506.123326

    Article  CAS  PubMed  Google Scholar 

  14. Crittenden SL, Leonhard KA, Byrd DT, Kimble J (2006) Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol Biol Cell 17(7):3051–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cinquin O, Crittenden SL, Morgan DE, Kimble J (2010) Progression from a stem cell-like state to early differentiation in the C. elegans germ line. Proc Natl Acad Sci U S A 107(5):2048–2053. doi:10.1073/pnas.0912704107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81:208–219

    Article  CAS  PubMed  Google Scholar 

  17. Kershner AM, Kimble J (2010) Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator. Proc Natl Acad Sci U S A 107(8):3936–3941. doi:10.1073/pnas.1000495107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Racher H, Hansen D (2010) Translational control in the C. elegans hermaphrodite germ line. Genome 53(2):83–102. doi:10.1139/g09-090

    Article  CAS  PubMed  Google Scholar 

  19. Moore FL, Jaruzelska J, Fox MS, Urano J, Firpo MT, Turek PJ, Dorfman DM, Reijo Pera RA (2003) Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins. Proc Natl Acad Sci U S A 100(2):538–543. doi:10.1073/pnas.0234478100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70(2):396–417

    Article  CAS  PubMed  Google Scholar 

  21. Angelo G, Van Gilst MR (2009) Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 326(5955):954–958. doi:10.1126/science.1178343

    Article  CAS  PubMed  Google Scholar 

  22. Seidel HS, Kimble J (2011) The oogenic germline starvation response in C. elegans. PLoS One 6(12):e28074. doi:10.1371/journal.pone.0028074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morgan DE, Crittenden SL, Kimble J (2010) The C. elegans adult male germline: stem cells and sexual dimorphism. Dev Biol 346(2):204–214. doi:10.1016/j.ydbio.2010.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hubbard EJ (2011) Insulin and germline proliferation in Caenorhabditis elegans. Vitam Horm 87:61–77. doi:10.1016/B978-0-12-386015-6.00024-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salinas LS, Maldonado E, Navarro RE (2006) Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans. Cell Death Differ 13(12):2129–2139. doi:10.1038/sj.cdd.4401976

    Article  CAS  PubMed  Google Scholar 

  26. Gracida X, Eckmann CR (2013) Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans. Curr Biol 23(7):607–613. doi:10.1016/j.cub.2013.02.034

    Article  CAS  PubMed  Google Scholar 

  27. Qin Z, Hubbard EJ (2015) Non-autonomous DAF-16/FOXO activity antagonizes age-related loss of C. elegans germline stem/progenitor cells. Nat Commun 6:7107. doi:10.1038/ncomms8107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seidel HS, Kimble J (2015) Cell-cycle quiescence maintains germline stem cells independent of GLP-1/Notch. Elife 4. doi:10.7554/eLife.10832

  29. Lopez AL 3rd, Chen J, Joo HJ, Drake M, Shidate M, Kseib C, Arur S (2013) DAF-2 and ERK couple nutrient availability to meiotic progression during Caenorhabditis elegans oogenesis. Dev Cell 27(2):227–240. doi:10.1016/j.devcel.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  30. Gupta P, Leahul L, Wang X, Wang C, Bakos B, Jasper K, Hansen D (2015) Proteasome regulation of the chromodomain protein MRG-1 controls the balance between proliferative fate and differentiation in the C. elegans germ line. Development 142(2):291–302. doi:10.1242/dev.115147

    Article  CAS  PubMed  Google Scholar 

  31. Millonigg S, Minasaki R, Nousch M, Eckmann CR (2014) GLD-4-mediated translational activation regulates the size of the proliferative germ cell pool in the adult C. elegans germ line. PLoS Genet 10(9):e1004647. doi:10.1371/journal.pgen.1004647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Novak P, Wang X, Ellenbecker M, Feilzer S, Voronina E (2015) Splicing machinery facilitates post-transcriptional regulation by FBFs and other RNA-binding proteins in Caenorhabditis elegans germline. G3 (Bethesda). doi:10.1534/g3.115.019315

  33. Jaramillo-Lambert A, Ellefson M, Villeneuve AM, Engebrecht J (2007) Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev Biol 308(1):206–221. doi:10.1016/j.ydbio.2007.05.019

    Article  CAS  PubMed  Google Scholar 

  34. Fox PM, Vought VE, Hanazawa M, Lee MH, Maine EM, Schedl T (2011) Cyclin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the C. elegans germline. Development 138(11):2223–2234. doi:10.1242/dev.059535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiang M, Cinquin A, Paz A, Meeds E, Price CA, Welling M, Cinquin O (2015) Control of Caenorhabditis elegans germ-line stem-cell cycling speed meets requirements of design to minimize mutation accumulation. BMC Biol 13(1):51. doi:10.1186/s12915-015-0148-y

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kimble J, Crittenden SL (2005) Germline proliferation and its control. WormBook. doi:10.1895/wormbook.1.13.1

    PubMed  PubMed Central  Google Scholar 

  37. Hansen D, Schedl T (2006) The regulatory network controlling the proliferation-meiotic entry decision in the Caenorhabditis elegans germ line. Curr Top Dev Biol 76:185–215

    Article  CAS  PubMed  Google Scholar 

  38. Fox PM, Schedl T (2015) Analysis of germline stem cell differentiation following loss of GLP-1 Notch activity in Caenorhabditis elegans. Genetics 201:167–184. doi:10.1534/genetics.115.178061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morgan CT, Noble D, Kimble J (2013) Mitosis-meiosis and sperm-oocyte fate decisions are separable regulatory events. Proc Natl Acad Sci U S A 110(9):3411–3416. doi:10.1073/pnas.1300928110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hansen D, Wilson-Berry L, Dang T, Schedl T (2004) Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131:93–104. doi:10.1242/dev.00916

    Article  CAS  PubMed  Google Scholar 

  41. Hansen D, Hubbard EJA, Schedl T (2004) Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline. Dev Biol 268(2):342–357

    Article  CAS  PubMed  Google Scholar 

  42. Zetka MC, Kawasaki I, Strome S, Müller F (1999) Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev 13(17):2258–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thompson BE, Bernstein DS, Bachorik JL, Petcherski AG, Wickens M, Kimble J (2005) Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB. Development 132(15):3471–3481. doi:10.1242/dev.01921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maciejowski J, Ugel N, Mishra B, Isopi M, Hubbard EJA (2006) Quantitative analysis of germline mitosis in adult C. elegans. Dev Biol 292:142–151. doi:10.1016/j.ydbio.2005.12.046

    Article  CAS  PubMed  Google Scholar 

  45. Snow JJ, Lee MH, Verheyden J, Kroll-Conner PL, Kimble J (2013) C. elegans FOG-3/Tob can either promote or inhibit germline proliferation, depending on gene dosage and genetic context. Oncogene 32(21):2614–2621. doi:10.1038/onc.2012.291

    Article  CAS  PubMed  Google Scholar 

  46. Lamont LB, Kimble J (2007) Developmental expression of FOG-1/CPEB protein and its control in the Caenorhabditis elegans hermaphrodite germ line. Dev Dyn 236(3):871–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jones AR, Francis R, Schedl T (1996) GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 180(1):165–183

    Article  CAS  PubMed  Google Scholar 

  48. Pazdernik N, Schedl T (2013) Introduction to germ cell development in Caenorhabditis elegans. Adv Exp Med Biol 757:1–16. doi:10.1007/978-1-4614-4015-4_1

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rothman JH, Singson A (eds) (2012) Caenorhabditis elegans: cell biology and physiology, vol 107. Methods in cell biology. Elsevier

    Google Scholar 

  50. Rothman JH, Singson A (2011) Caenorhabditis elegans: molecular genetics and development. Methods Cell Biol 106:xv–xviii

    Article  PubMed  Google Scholar 

  51. Ghazi A, Yanowitz J, Silverman GA (eds) (2014) C. elegans: methods, vol 68(3). Elsevier

    Google Scholar 

  52. Ito K, McGhee JD (1987) Parental DNA strands segregate randomly during embryonic development of Caenorhabditis elegans. Cell 49(3):329–336

    Article  CAS  PubMed  Google Scholar 

  53. Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94(3):387–398

    Article  CAS  PubMed  Google Scholar 

  54. Francis R, Barton MK, Kimble J, Schedl T (1995) gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139(2):579–606

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO (1999) Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126(5):1011–1022

    CAS  PubMed  Google Scholar 

  56. Sulston J, Hodgkin J (1988) Methods. In: Wood WB (ed) The nematode Caenorhabditis elegans, vol 17, Cold Spring Harbor monograph series. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 587–606

    Google Scholar 

  57. Porta-de-la-Riva M, Fontrodona L, Villanueva A, Ceron J (2012) Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp 64:e4019. doi:10.3791/4019

    PubMed  Google Scholar 

  58. Hutter H (2012) Fluorescent protein methods: strategies and applications. Methods Cell Biol 107:67–92. doi:10.1016/B978-0-12-394620-1.00003-5

    Article  CAS  PubMed  Google Scholar 

  59. McCarter J, Bartlett B, Dang T, Schedl T (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205(1):111–128

    Article  CAS  PubMed  Google Scholar 

  60. Shakes DC, Miller DM 3rd, Nonet ML (2012) Immunofluorescence microscopy. Methods Cell Biol 107:35–66. doi:10.1016/B978-0-12-394620-1.00002-3

    Article  CAS  PubMed  Google Scholar 

  61. Duerr JS (2006) Immunohistochemistry. WormBook. doi:10.1895/wormbook.1.105.1

    PubMed  PubMed Central  Google Scholar 

  62. Byrd DT, Knobel K, Affeldt K, Crittenden SL, Kimble J (2014) A DTC niche plexus surrounds the germline stem cell pool in Caenorhabditis elegans. PLoS One 9(2):e88372. doi:10.1371/journal.pone.0088372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Eckmann CR, Crittenden SL, Suh N, Kimble J (2004) GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics 168:147–160. doi:10.1534/genetics.104.029264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vogel JL, Michaelson D, Santella A, Hubbard EJ, Bao Z (2014) Irises: a practical tool for image-based analysis of cellular DNA content. Worm 3:e29041. doi:10.4161/worm.29041

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kershner AM, Shin H, Hansen TJ, Kimble J (2014) Discovery of two GLP-1/Notch target genes that account for the role of GLP-1/Notch signaling in stem cell maintenance. Proc Natl Acad Sci U S A 111(10):3739–3744. doi:10.1073/pnas.1401861111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D Jr, Mello CC (2012) piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150(1):65–77. doi:10.1016/j.cell.2012.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wedeles CJ, Wu MZ, Claycomb JM (2013) Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev Cell 27(6):664–671. doi:10.1016/j.devcel.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  68. Wedeles CJ, Wu MZ, Claycomb JM (2014) Silent no more: endogenous small RNA pathways promote gene expression. Worm 3:e28641. doi:10.4161/worm.28641

    Article  PubMed  PubMed Central  Google Scholar 

  69. Crittenden SL, Troemel ER, Evans TC, Kimble J (1994) GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 120:2901–2911

    CAS  PubMed  Google Scholar 

  70. Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417:660–663. doi:10.1038/nature754

    Article  CAS  PubMed  Google Scholar 

  71. Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J (2004) FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 7(5):697–707

    Article  CAS  PubMed  Google Scholar 

  72. Voronina E, Paix A, Seydoux G (2012) The P granule component PGL-1 promotes the localization and silencing activity of the PUF protein FBF-2 in germline stem cells. Development 139(20):3732–3740. doi:10.1242/dev.083980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schumacher B, Hanazawa M, Lee M-H, Nayak S, Volkmann K, Hofmann R, Hengartner M, Schedl T, Gartner A (2005) Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120(3):357–368

    Article  CAS  PubMed  Google Scholar 

  74. Blelloch R, Santa Anna-Arriola S, Gao D, Li Y, Hodgkin J, Kimble J (1999) The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Dev Biol 216:382–393

    Article  CAS  PubMed  Google Scholar 

  75. Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D (1999) Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: Relations between the germ line and soma. Dev Biol 212(1):101–123. doi:10.1006/dbio.1999.9356

    Article  CAS  PubMed  Google Scholar 

  76. Wong BG, Paz A, Corrado MA, Ramos BR, Cinquin A, Cinquin O, Hui EE (2013) Live imaging reveals active infiltration of mitotic zone by its stem cell niche. Integr Biol (Cambridge) 5(7):976–982. doi:10.1039/c3ib20291g

    Article  CAS  Google Scholar 

  77. Nadarajan S, Govindan JA, McGovern M, Hubbard EJA, Greenstein D (2009) MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development 136(13):2223–2234. doi:10.1242/dev.034603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Korta DZ, Hubbard EJ (2010) Soma-germline interactions that influence germline proliferation in Caenorhabditis elegans. Dev Dyn 239(5):1449–1459. doi:10.1002/dvdy.22268

    CAS  PubMed  PubMed Central  Google Scholar 

  79. van den Heuvel S (2005) Cell-cycle regulation. WormBook. doi:10.1895/wormbook.1.28.1

    PubMed  PubMed Central  Google Scholar 

  80. Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106(6):348–360

    Article  CAS  PubMed  Google Scholar 

  81. Crittenden SL, Kimble J (2008) Analysis of the C. elegans germline stem cell region. In: Hou S, Singh SR (eds) Germline stem cell protocols, vol 450, Methods in molecular biology. Humana, Totowa, NJ, pp 27–44

    Chapter  Google Scholar 

  82. Jantsch V, Tang L, Pasierbek P, Penkner A, Nayak S, Baudrimont A, Schedl T, Gartner A, Loidl J (2007) Caenorhabditis elegans prom-1 is required for meiotic prophase progression and homologous chromosome pairing. Mol Biol Cell 18(12):4911–4920. doi:10.1091/mbc.E07-03-0243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sato A, Isaac B, Phillips CM, Rillo R, Carlton PM, Wynne DJ, Kasad RA, Dernburg AF (2009) Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139(5):907–919. doi:10.1016/j.cell.2009.10.039

  84. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105(7):2415–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jeong J, Verheyden JM, Kimble J (2011) Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. PLoS Genet 7(3):e1001348. doi:10.1371/journal.pgen.1001348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aherne WA, Camplejohn RS, Wright NA (1977) An introduction to cell population kinetics. Edward Arnold, London

    Google Scholar 

  87. Fay DS (2013) Classical genetic methods. WormBook. pp 1–58. doi:10.1895/wormbook.1.165.1

  88. Ahringer J. (ed) (2006) Reverse genetics. WormBook. doi:10.1895/wormbook.1.47.1

  89. Kutscher LM, Shaham S (2014) Forward and reverse mutagenesis in C. elegans. WormBook. pp 1–26. doi:10.1895/wormbook.1.167.1

  90. Huang L, Sternberg PW (2006) Genetic dissection of developmental pathways. WormBook. doi:10.1895/wormbook.1.88.2

    PubMed  PubMed Central  Google Scholar 

  91. Kemphues K (2005) Essential genes. WormBook. pp 1–7. doi:10.1895/wormbook.1.57.1

  92. Lambie EJ, Kimble J (1991) Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development 112:231–240

    CAS  PubMed  Google Scholar 

  93. Hubbard EJ (2014) FLP/FRT and Cre/lox recombination technology in C. elegans. Methods 68(3):417–424. doi:10.1016/j.ymeth.2014.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kage-Nakadai E, Imae R, Suehiro Y, Yoshina S, Hori S, Mitani S (2014) A conditional knockout toolkit for Caenorhabditis elegans based on the Cre/loxP recombination. PLoS One 9(12):e114680. doi:10.1371/journal.pone.0114680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wei X, Potter CJ, Luo L, Shen K (2012) Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat Methods 9(4):391–395. doi:10.1038/nmeth.1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zeiser E, Frokjaer-Jensen C, Jorgensen E, Ahringer J (2011) MosSCI and gateway compatible plasmid toolkit for constitutive and inducible expression of transgenes in the C. elegans germline. PLoS One 6(5):e20082. doi:10.1371/journal.pone.0020082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cho U, Zimmerman SM, Chen LC, Owen E, Kim JV, Kim SK, Wandless TJ (2013) Rapid and tunable control of protein stability in Caenorhabditis elegans using a small molecule. PLoS One 8(8):e72393. doi:10.1371/journal.pone.0072393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Toettcher JE, Weiner OD, Lim WA (2013) Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155(6):1422–1434. doi:10.1016/j.cell.2013.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yumerefendi H, Dickinson DJ, Wang H, Zimmerman SP, Bear JE, Goldstein B, Hahn K, Kuhlman B (2015) Control of protein activity and cell fate specification via light-mediated nuclear translocation. PLoS One 10(6):e0128443. doi:10.1371/journal.pone.0128443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wedeles CJ, Wu MZ, Claycomb JM (2013) A multitasking Argonaute: exploring the many facets of C. elegans CSR-1. Chromosome Res 21(6-7):573–586. doi:10.1007/s10577-013-9383-7

    Article  CAS  PubMed  Google Scholar 

  101. Merritt C, Seydoux G (2010) Transgenic solutions for the germline. WormBook. doi:10.1895/wormbook.1.148.1

    PubMed  PubMed Central  Google Scholar 

  102. Fire A, Alcazar R, Tan F (2006) Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans. Genetics 173(3):1259–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Green RA, Audhya A, Pozniakovsky A, Dammermann A, Pemble H, Monen J, Portier N, Hyman A, Desai A, Oegema K (2008) Expression and imaging of fluorescent proteins in the C. elegans gonad and early embryo. Methods Cell Biol 85:179–218. doi:10.1016/S0091-679X(08)85009-1

    Article  CAS  PubMed  Google Scholar 

  104. Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51:589–599

    Article  CAS  PubMed  Google Scholar 

  105. Crittenden SL, Eckmann CR, Wang L, Bernstein DS, Wickens M, Kimble J (2003) Regulation of the mitosis/meiosis decision in the Caenorhabditis elegans germline. Philos Trans R Soc Lond B Biol Sci 358:1359–1362. doi:10.1098/rstb.2003.1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Berry LW, Westlund B, Schedl T (1997) Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124(4):925–936

    CAS  PubMed  Google Scholar 

  107. Kadyk LC, Kimble J (1998) Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125(10):1803–1813

    CAS  PubMed  Google Scholar 

  108. Wright JE, Ciosk R (2013) RNA-based regulation of pluripotency. Trends Genet 29(2):99–107. doi:10.1016/j.tig.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  109. Biedermann B, Wright J, Senften M, Kalchhauser I, Sarathy G, Lee MH, Ciosk R (2009) Translational repression of cyclin E prevents precocious mitosis and embryonic gene activation during C. elegans meiosis. Dev Cell 17(3):355–364. doi:10.1016/j.devcel.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  110. Updike DL, Knutson AK, Egelhofer TA, Campbell AC, Strome S (2014) Germ-granule components prevent somatic development in the C. elegans germline. Curr Biol 24(9):970–975. doi:10.1016/j.cub.2014.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tursun B, Patel T, Kratsios P, Hobert O (2011) Direct conversion of C. elegans germ cells into specific neuron types. Science 331(6015):304–308. doi:10.1126/science.1199082

    Article  CAS  PubMed  Google Scholar 

  112. Patel T, Tursun B, Rahe DP, Hobert O (2012) Removal of Polycomb repressive complex 2 makes C. elegans germ cells susceptible to direct conversion into specific somatic cell types. Cell Rep 2(5):1178–1186. doi:10.1016/j.celrep.2012.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Robert VJ, Garvis S, Palladino F (2015) Repression of somatic cell fate in the germline. Cell Mol Life Sci. doi:10.1007/s00018-015-1942-y

    PubMed  Google Scholar 

  114. Killian DJ, Hubbard EJA (2004) C. elegans pro-1 activity is required for soma/germline interactions that influence proliferation and differentiation in the germ line. Development 131(6):1267–1278

    Article  CAS  PubMed  Google Scholar 

  115. Pepper AS-R, Lo T-W, Killian DJ, Hall DH, Hubbard EJA (2003) The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev Biol 259(2):336–350

    Article  CAS  PubMed  Google Scholar 

  116. McGovern M, Voutev R, Maciejowski J, Corsi AK, Hubbard EJ (2009) A “latent niche” mechanism for tumor initiation. Proc Natl Acad Sci U S A 106(28):11617–11622. doi:10.1073/pnas.0903768106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Subramaniam K, Seydoux G (2003) Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the Pumilio-like protein PUF-8. Curr Biol 13(2):134–139

    Article  CAS  PubMed  Google Scholar 

  118. Pepper AS-R, Killian DJ, Hubbard EJA (2003) Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics 163(1):115–132

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M (1999) NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol 9(18):1009–1018

    Article  CAS  PubMed  Google Scholar 

  120. Subramaniam K, Seydoux G (1999) nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126(21):4861–4871

    CAS  PubMed  Google Scholar 

  121. Killian DJ, Hubbard EJA (2005) Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line. Dev Biol 279(2):322–335

    Article  CAS  PubMed  Google Scholar 

  122. McCarter J, Bartlett B, Dang T, Schedl T (1997) Soma – germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol 181(2):121–143

    Article  CAS  PubMed  Google Scholar 

  123. Reinke V, Gil IS, Ward S, Kazmer K (2004) Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131(2):311–323. doi:10.1242/dev.00914

    Article  CAS  PubMed  Google Scholar 

  124. Wang X, Zhao Y, Wong K, Ehlers P, Kohara Y, Jones SJ, Marra MA, Holt RA, Moerman DG, Hansen D (2009) Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC Genomics 10:213. doi:10.1186/1471-2164-10-213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Ortiz MA, Noble D, Sorokin EP, Kimble J (2014) A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans. G3 (Bethesda) 4(9):1765–1772. doi:10.1534/g3.114.012351

    Article  CAS  Google Scholar 

  126. Lee M-H, Schedl T (2006) RNA in situ hybridization of dissected gonads. WormBook. doi:10.1895/wormbook.1.107.1

    Google Scholar 

  127. Suh N, Crittenden SL, Goldstrohm AC, Hook B, Thompson B, Wickens M, Kimble J (2009) FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 181(4):1249–1260. doi:10.1534/genetics.108.099440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RHA, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  CAS  PubMed  Google Scholar 

  129. Kumsta C, Hansen M (2012) C. elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline. PLoS One 7(5):e35428. doi:10.1371/journal.pone.0035428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Maine EM, Hansen D, Springer D, Vought VE (2004) Caenorhabditis elegans atx-2 promotes germline proliferation and the oocyte fate. Genetics 168(2):817–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim E, Sun L, Gabel CV, Fang-Yen C (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One 8(1):e53419. doi:10.1371/journal.pone.0053419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rog O, Dernburg AF (2015) Direct visualization reveals kinetics of meiotic chromosome synapsis. Cell Rep. doi:10.1016/j.celrep.2015.02.032

    PubMed  PubMed Central  Google Scholar 

  133. Gerhold AR, Ryan J, Vallee-Trudeau JN, Dorn JF, Labbe JC, Maddox PS (2015) Investigating the regulation of stem and progenitor cell mitotic progression by in situ imaging. Curr Biol 25(9):1123–1134. doi:10.1016/j.cub.2015.02.054

    Article  CAS  PubMed  Google Scholar 

  134. San-Miguel A, Lu H (2013) Microfluidics as a tool for C. elegans research. WormBook. pp 1–19. doi:10.1895/wormbook.1.162.1

  135. Shaham S (2006) WormBook: methods in cell biology. WormBook. doi:10.1895/wormbook.1.41.1

    Google Scholar 

  136. Ji N, van Oudenaarden A (2012) Single molecule fluorescent in situ hybridization (smFISH) of C. elegans worms and embryos. WormBook. pp 1–16. doi:10.1895/wormbook.1.153.1

  137. Kawasaki I, Shim Y-H, Kirchner J, Kaminker J, Wood WB, Strome S (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94(5):635–645

    Article  CAS  PubMed  Google Scholar 

  138. Ward S, Roberts TM, Strome S, Pavalko FM, Hogan E (1986) Monoclonal antibodies that recognize a polypeptide antigenic determinant shared by multiple Caenorhabditis elegans sperm-specific proteins. J Cell Biol 102(5):1778–1786

    Article  CAS  PubMed  Google Scholar 

  139. Sorokin EP, Gasch AP, Kimble J (2014) Competence for chemical reprogramming of sexual fate correlates with an intersexual molecular signature in Caenorhabditis elegans. Genetics 198(2):561–575. doi:10.1534/genetics.114.169409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Kulkarni M, Shakes DC, Guevel K, Smith HE (2012) SPE-44 implements sperm cell fate. PLoS Genet 8(4):e1002678. doi:10.1371/journal.pgen.1002678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10(12):4311–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15(11):1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cinquin A, Zheng L, Taylor PH, Paz A, Zhang L, Chiang M, Snow JJ, Nie Q, Cinquin O (2015) Semi-permeable diffusion barriers enhance patterning robustness in the C. elegans germline. Dev Cell 35(4):405–417. doi:10.1016/j.devcel.2015.10.027

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Crittenden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Crittenden, S.L., Seidel, H.S., Kimble, J. (2017). Analysis of the C. elegans Germline Stem Cell Pool. In: Buszczak, M. (eds) Germline Stem Cells. Methods in Molecular Biology, vol 1463. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4017-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4017-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4015-8

  • Online ISBN: 978-1-4939-4017-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics