Advertisement

Daikenchuto and GI Disorders

  • Toru KonoEmail author
  • Mitsuo Shimada
  • Masahiro Yamamoto
  • Yoshio Kase
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

This overview of herbal medicine use in Japan was designed to provide a review of the accumulating scientific evidence of the mechanism and clinical action of daikenchuto (DKT). Use of traditional Japanese medicines, including DKT, has a relatively “short” history of 500 years of clinical use. Only in the last 30 years has the Japanese government officially recognized herbal medicine as a valid form of treatment alongside the typical Western medicines.

There has been a recent surge in scientifically robust data from basic and clinical studies for DKT, including placebo-controlled double-blind studies for various gastrointestinal disorders, and absorption, distribution, metabolism, and excretion studies have been conducted or are in the process of being conducted in both Japan and the USA. Clinical studies suggest that DKT is beneficial for postoperative ileus. Basic studies indicate that the effect of DKT is a composite of numerous actions mediated by multiple compounds supplied via multiple routes. In addition to known mechanisms of action via enteric/sensory nerve stimulation, novel mechanisms via the TRPA1 channel and two pore domain potassium channels have recently been elucidated. DKT compounds target these channels with and without absorption, both before and after metabolic activation by enteric flora, with different timings and possibly with synergism.

Key words

Daikenchuto Kampo CGRP Adrenomedullin TRPA1 KCNK Hydroxy-α-sanshool 6-shogaol Ginsenoside Rb1 Postoperative ileus Crohn’s disease 

References

  1. 1.
    Motoo Y, Seki T, Tsutani K (2011) Traditional Japanese medicine, Kampo: its history and current status. Chin J Integr Med 17:85–87CrossRefPubMedGoogle Scholar
  2. 2.
    Kono T, Kanematsu T, Kitajima M (2009) Exodus of Kampo, traditional Japanese medicine, from the complementary and alternative medicines: is it time yet? Surgery 146:837–840CrossRefPubMedGoogle Scholar
  3. 3.
    Terasawa K (2004) Evidence-based reconstruction of Kampo medicine: part-III-how should Kampo be evaluated? Evid Based Complement Alternat Med 1:219–222CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Terasawa K (2004) Evidence-based reconstruction of Kampo medicine: part I-Is Kampo CAM? Evid Based Complement Alternat Med 1:11–16CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kono T, Shimada M, Yamamoto M et al (2015) Complementary and synergistic therapeutic effects of compounds found in Kampo medicine: analysis of daikenchuto. Front Pharmacol 6:159CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Munekage M, Ichikawa K, Kitagawa H et al (2013) Population pharmacokinetic analysis of daikenchuto, a traditional Japanese medicine (Kampo) in Japanese and US health volunteers. Drug Metab Dispos 41:1256–1263CrossRefPubMedGoogle Scholar
  7. 7.
    Munekage M, Kitagawa H, Ichikawa K et al (2011) Pharmacokinetics of daikenchuto, a traditional Japanese medicine (kampo) after single oral administration to healthy Japanese volunteers. Drug Metab Dispos 39:1784–1788CrossRefPubMedGoogle Scholar
  8. 8.
    Li J, Zhong W, Wang W et al (2014) Ginsenoside metabolite compound K promotes recovery of dextran sulfate sodium-induced colitis and inhibits inflammatory responses by suppressing NF-kappaB activation. PLoS One 9:e87810CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang Z, Du GJ, Wang CZ et al (2013) Compound K, a ginsenoside metabolite, inhibits colon cancer growth via multiple pathways including p53-p21 interactions. Int J Mol Sci 14:2980–2995CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kaneko A, Kono T, Miura N et al (2013) Preventive effect of TU-100 on a type-2 model of colitis in mice: possible involvement of enhancing adrenomedullin in intestinal epithelial cells. Gastroenterol Res Pract 2013:384057CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kono T, Kaneko A, Hira Y et al (2010) Anti-colitis and -adhesion effects of daikenchuto via endogenous adrenomedullin enhancement in Crohn’s disease mouse model. J Crohns Colitis 4:161–170CrossRefPubMedGoogle Scholar
  12. 12.
    Kono T, Kaneko A, Omiya Y et al (2013) Epithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine. Am J Physiol Gastrointest Liver Physiol 304:G428–G436CrossRefPubMedGoogle Scholar
  13. 13.
    Kono T, Koseki T, Chiba S et al (2008) Colonic vascular conductance increased by Daikenchuto via calcitonin gene-related peptide and receptor-activity modifying protein 1. J Surg Res 150:78–84CrossRefPubMedGoogle Scholar
  14. 14.
    Kono T, Omiya Y, Hira Y et al (2011) Daikenchuto (TU-100) ameliorates colon microvascular dysfunction via endogenous adrenomedullin in Crohn’s disease rat model. J Gastroenterol 46:1187–1196CrossRefPubMedGoogle Scholar
  15. 15.
    Yeoh KG, Kang JY, Yap I et al (1995) Chili protects against aspirin-induced gastroduodenal mucosal injury in humans. Dig Dis Sci 40:580–583CrossRefPubMedGoogle Scholar
  16. 16.
    Reinshagen M, Patel A, Sottili M et al (1994) Protective function of extrinsic sensory neurons in acute rabbit experimental colitis. Gastroenterology 106:1208–1214CrossRefPubMedGoogle Scholar
  17. 17.
    Kinoshita Y, Inui T, Chiba T (1993) Calcitonin gene-related peptide: a neurotransmitter involved in capsaicin-sensitive afferent nerve-mediated gastric mucosal protection. J Clin Gastroenterol 17(Suppl 1):S27–S32CrossRefPubMedGoogle Scholar
  18. 18.
    Holzer P, Livingston EH, Saria A et al (1991) Sensory neurons mediate protective vasodilatation in rat gastric mucosa. Am J Physiol 260:G363–G370PubMedGoogle Scholar
  19. 19.
    Holm L, Phillipson M, Perry MA (2002) NO-flurbiprofen maintains duodenal blood flow, enhances mucus secretion contributing to lower mucosal injury. Am J Physiol Gastrointest Liver Physiol 283:G1090–G1097CrossRefPubMedGoogle Scholar
  20. 20.
    Martinez V, Tache Y (2006) Carcitonin gene-related peptide and gastrointestinal function. In: Kastin AJ (ed) Handbook of biologically active peptides. Elsvier, London, pp 1005–1011CrossRefGoogle Scholar
  21. 21.
    Guth P, Leung F, Kauffmam G (1989) Physiology of the gastric circulation. In: Schultz S (ed) Handbook of physiology. American Physiological Society, Bethesda, pp 1371–1404Google Scholar
  22. 22.
    Timmermans JP, Scheuermann DW, Barbiers M et al (1992) Calcitonin gene-related peptide-like immunoreactivity in the human small intestine. Acta Anat (Basel) 143:48–53CrossRefGoogle Scholar
  23. 23.
    Clague JR, Sternini C, Brecha NC (1985) Localization of calcitonin gene-related peptide-like immunoreactivity in neurons of the rat gastrointestinal tract. Neurosci Lett 56:63–68CrossRefPubMedGoogle Scholar
  24. 24.
    Miampamba M, Sharkey KA (1998) Distribution of calcitonin gene-related peptide, somatostatin, substance P and vasoactive intestinal polypeptide in experimental colitis in rats. Neurogastroenterol Motil 10:315–329CrossRefPubMedGoogle Scholar
  25. 25.
    Murata P, Kase Y, Ishige A et al (2002) The herbal medicine Dai-kenchu-to and one of its active components [6]-shogaol increase intestinal blood flow in rats. Life Sci 70:2061–2070CrossRefPubMedGoogle Scholar
  26. 26.
    Foord SM, Marshall FH (1999) RAMPs: accessory proteins for seven transmembrane domain receptors. Trends Pharmacol Sci 20:184–187CrossRefPubMedGoogle Scholar
  27. 27.
    McLatchie LM, Fraser NJ, Main MJ et al (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339CrossRefPubMedGoogle Scholar
  28. 28.
    Brain SD, Grant AD (2004) Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev 84:903–934CrossRefPubMedGoogle Scholar
  29. 29.
    Kato J, Kitamura K (2015) Bench-to-bedside pharmacology of adrenomedullin. Eur J Pharmacol 764:140–148CrossRefPubMedGoogle Scholar
  30. 30.
    Chu DQ, Choy M, Foster P et al (2000) A comparative study of the ability of calcitonin gene-related peptide and adrenomedullin(13–52) to modulate microvascular but not thermal hyperalgesia responses. Br J Pharmacol 130:1589–1596CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tam C, Brain SD (2004) The assessment of vasoactive properties of CGRP and adrenomedullin in the microvasculature: a study using in vivo and in vitro assays in the mouse. J Mol Neurosci 22:117–124CrossRefPubMedGoogle Scholar
  32. 32.
    Schubert ML (2006) Adrenomedullin in gastrointestinal function. In: Kastin AJ (ed) Handbook of biologically active peptides. Elesvier, London, pp 999–1004CrossRefGoogle Scholar
  33. 33.
    Wu R, Zhou M, Wang P (2003) Adrenomedullin and adrenomedullin binding protein-1 downregulate TNF-alpha in macrophage cell line and rat Kupffer cells. Regul Pept 112:19–26CrossRefPubMedGoogle Scholar
  34. 34.
    Sato Y, Katagiri F, Inoue S et al (2004) Dai-kenchu-to raises levels of calcitonin gene-related peptide and substance P in human plasma. Biol Pharm Bull 27:1875–1877CrossRefPubMedGoogle Scholar
  35. 35.
    Shibata C, Sasaki I, Naito H et al (1999) The herbal medicine Dai-Kenchu-Tou stimulates upper gut motility through cholinergic and 5-hydroxytryptamine 3 receptors in conscious dogs. Surgery 126:918–924CrossRefPubMedGoogle Scholar
  36. 36.
    Tokita Y, Yuzurihara M, Sakaguchi M et al (2007) The pharmacological effects of Daikenchuto, a traditional herbal medicine, on delayed gastrointestinal transit in rat postoperative ileus. J Pharmacol Sci 104:303–310CrossRefPubMedGoogle Scholar
  37. 37.
    Jin XL, Shibata C, Naito H et al (2001) Intraduodenal and intrajejunal administration of the herbal medicine, dai-kenchu-tou, stimulates small intestinal motility via cholinergic receptors in conscious dogs. Dig Dis Sci 46:1171–1176CrossRefPubMedGoogle Scholar
  38. 38.
    Nagano T, Itoh H, Takeyama M (1999) Effect of Dai-kenchu-to on levels of 3 brain-gut peptides (motilin, gastrin and somatostatin) in human plasma. Biol Pharm Bull 22:1131–1133CrossRefPubMedGoogle Scholar
  39. 39.
    Satoh K, Hashimoto K, Hayakawa T et al (2001) Mechanism of atropine-resistant contraction induced by Dai-kenchu-to in guinea pig ileum. Jpn J Pharmacol 86:32–37CrossRefPubMedGoogle Scholar
  40. 40.
    Endo M, Hori M, Ozaki H et al (2014) Daikenchuto, a traditional Japanese herbal medicine, ameliorates postoperative ileus by anti-inflammatory action through nicotinic acetylcholine receptors. J Gastroenterol 49:1026–1039CrossRefPubMedGoogle Scholar
  41. 41.
    Bautista DM, Sigal YM, Milstein AD et al (2008) Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat Neurosci 11:772–779CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    MacKinnon R, Cohen SL, Kuo A et al (1998) Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280:106–109CrossRefPubMedGoogle Scholar
  43. 43.
    Iwai N, Kume Y, Kimura O et al (2007) Effects of herbal medicine Dai-Kenchu-to on anorectal function in children with severe constipation. Eur J Pediatr Surg 17:115–118CrossRefPubMedGoogle Scholar
  44. 44.
    Endo S, Nishida T, Nishikawa K et al (2006) Dai-kenchu-to, a Chinese herbal medicine, improves stasis of patients with total gastrectomy and jejunal pouch interposition. Am J Surg 192:9–13CrossRefPubMedGoogle Scholar
  45. 45.
    Suehiro T, Matsumata T, Shikada Y et al (2005) The effect of the herbal medicines dai-kenchu-to and keishi-bukuryo-gan on bowel movement after colorectal surgery. Hepatogastroenterology 52:97–100PubMedGoogle Scholar
  46. 46.
    Itoh T, Yamakawa J, Mai M et al (2002) The effect of the herbal medicine dai-kenchu-to on post-operative ileus. J Int Med Res 30:428–432CrossRefPubMedGoogle Scholar
  47. 47.
    Manabe N, Camilleri M, Rao A et al (2010) Effect of daikenchuto (TU-100) on gastrointestinal and colonic transit in humans. Am J Physiol Gastrointest Liver Physiol 298:G970–G975CrossRefPubMedGoogle Scholar
  48. 48.
    Shimada M, Morine Y, Nagano H et al (2015) Effect of TU-100, a traditional Japanese medicine, administered after hepatic resection in patients with liver cancer: a multi-center, phase III trial (JFMC40-1001). Int J Clin Oncol 20:95–104CrossRefPubMedGoogle Scholar
  49. 49.
    Yoshikawa K, Shimada M, Wakabayashi G et al (2015) The effect of DKT, a traditional Japanese herbal medicine, after total gastrectomy for gastric cancer: a multi-center, randomized, double-blind, placebo-controlled phase II trial (JFMC42-1002). J Am Coll Surg 221(2):571–578Google Scholar
  50. 50.
    Akamaru Y, Takahashi T, Nishida T et al (2015) Effects of daikenchuto, a Japanese herb, on intestinal motility after total gastrectomy: a prospective randomized trial. J Gastrointest Surg 19:467–472CrossRefPubMedGoogle Scholar
  51. 51.
    Talero E, Sanchez-Fidalgo S, de la Lastra CA et al (2008) Acute and chronic responses associated with adrenomedullin administration in experimental colitis. Peptides 29:2001–2012CrossRefPubMedGoogle Scholar
  52. 52.
    Ashizuka S, Ishikawa N, Kato J et al (2005) Effect of adrenomedullin administration on acetic acid-induced colitis in rats. Peptides 26:2610–2615CrossRefPubMedGoogle Scholar
  53. 53.
    Allaker RP, Kapas S (2003) Adrenomedullin and mucosal defence: interaction between host and microorganism. Regul Pept 112:147–152CrossRefPubMedGoogle Scholar
  54. 54.
    Marutsuka K, Nawa Y, Asada Y et al (2001) Adrenomedullin and proadrenomudullin N-terminal 20 peptide (PAMP) are present in human colonic epithelia and exert an antimicrobial effect. Exp Physiol 86:543–545CrossRefPubMedGoogle Scholar
  55. 55.
    Clavel T, Haller D (2007) Bacteria- and host-derived mechanisms to control intestinal epithelial cell homeostasis: implications for chronic inflammation. Inflamm Bowel Dis 13:1153–1164CrossRefPubMedGoogle Scholar
  56. 56.
    Gonzalez-Rey E, Fernandez-Martin A, Chorny A et al (2006) Therapeutic effect of urocortin and adrenomedullin in a murine model of Crohn’s disease. Gut 55:824–832CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Westphal M, Booke M, Dinh-Xuan AT (2004) Adrenomedullin: a smart road from pheochromocytoma to treatment of pulmonary hypertension. Eur Respir J 24:518–520CrossRefPubMedGoogle Scholar
  58. 58.
    Eto T, Kitamura K, Kato J (1999) Biological and clinical roles of adrenomedullin in circulation control and cardiovascular diseases. Clin Exp Pharmacol Physiol 26:371–380CrossRefPubMedGoogle Scholar
  59. 59.
    Meeran K, O’Shea D, Upton PD et al (1997) Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J Clin Endocrinol Metab 82:95–100PubMedGoogle Scholar
  60. 60.
    Sandborn WJ (2007) Clinical perspectives in Crohn’s disease. Moving forward with anti-TNF-alpha therapy: current needs and future treatments. Rev Gastroenterol Disord 7(Suppl 2):S23–S35PubMedGoogle Scholar
  61. 61.
    Kanazawa A, Sako M, Takazoe M et al (2014) Daikenchuto, a traditional Japanese herbal medicine, for the maintenance of surgically induced remission in patients with Crohn’s disease: a retrospective analysis of 258 patients. Surg Today 44:1506–1512CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Toru Kono
    • 1
    • 2
    • 3
    Email author
  • Mitsuo Shimada
    • 3
  • Masahiro Yamamoto
    • 4
  • Yoshio Kase
    • 4
  1. 1.Center for Clinical and Biomedical ResearchSapporo Higashi Tokushukai HospitalSapporoJapan
  2. 2.Department of Pathophysiology and Therapeutics, Faculty of PharmaceuticalSciencesHokkaido UniversitySapporoJapan
  3. 3.Department of Surgery, Institute of Health BiosciencesThe University of Tokushima, Graduate School of MedicineTokushimaJapan
  4. 4.Tsumura Research Laboratories, Kampo Scientific Strategies DivisionTsumura & CO.IbarakiJapan

Personalised recommendations