Skip to main content

Cell-Type Specific GRK2 Interactomes: Pathophysiological Implications

  • Protocol
  • First Online:
G Protein-Coupled Receptor Kinases

Abstract

G protein-coupled receptor kinase 2 (GRK2) is emerging as a key hub in cell signaling cascades. In addition to modulating activated G protein-coupled receptors, GRK2 can phosphorylate and/or functionally interact with a complex network of cellular proteins in a cell-type and physiological context-dependent way. A combination of such canonical and noncanonical interactions underlies the participation of this kinase in the control of cell migration, proliferation or metabolism and in integrated processes at the tissue or whole organism levels, such as angiogenesis, cardiovascular function, or insulin resistance, among others. Its role as a signaling node and the fact that altered levels of GRK2 are detected in a variety of pathological conditions put forward this protein as a potentially relevant diagnostic and therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133(1):40–69. doi:10.1016/j.pharmthera.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  2. Shenoy SK, Lefkowitz RJ (2011) beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32(9):521–533. doi:10.1016/j.tips.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ribas C, Penela P, Murga C, Salcedo A, Garcia-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F Jr (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768(4):913–922. doi:10.1016/j.bbamem.2006.09.019

    Article  CAS  PubMed  Google Scholar 

  4. Penela P, Murga C, Ribas C, Lafarga V, Mayor F Jr (2010) The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br J Pharmacol 160(4):821–832. doi:10.1111/j.1476-5381.2010.00727.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Penela P, Nogues L, Mayor F Jr (2014) Role of G protein-coupled receptor kinases in cell migration. Curr Opin Cell Biol 27:10–17. doi:10.1016/j.ceb.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  6. Evron T, Daigle TL, Caron MG (2012) GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol Sci 33(3):154–164. doi:10.1016/j.tips.2011.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lymperopoulos A, Rengo G, Koch WJ (2012) GRK2 inhibition in heart failure: something old, something new. Curr Pharm Des 18(2):186–191. doi:10.2174/138161212799040510

    Article  CAS  PubMed  Google Scholar 

  8. Liggett SB (2011) Phosphorylation barcoding as a mechanism of directing GPCR signaling. Sci Signal 4(185):pe36. doi:10.1126/scisignal.2002331

    Article  CAS  PubMed  Google Scholar 

  9. Li L, Homan KT, Vishnivetskiy SA, Manglik A, Tesmer JJ, Gurevich VV, Gurevich EV (2015) G protein-coupled receptor kinases of the GRK4 protein subfamily phosphorylate inactive G Protein-coupled Receptors (GPCRs). J Biol Chem 290(17):10775–10790. doi:10.1074/jbc.M115.644773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, Ross J Jr, Lefkowitz RJ, Caron MG, Giros B (1996) Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci U S A 93(23):12974–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deiss K, Kisker C, Lohse MJ, Lorenz K (2012) Raf kinase inhibitor protein (RKIP) dimer formation controls its target switch from Raf1 to G protein-coupled receptor kinase (GRK) 2. J Biol Chem 287(28):23407–23417. doi:10.1074/jbc.M112.363812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eijkelkamp N, Wang H, Garza-Carbajal A, Willemen HL, Zwartkruis FJ, Wood JN, Dantzer R, Kelley KW, Heijnen CJ, Kavelaars A (2010) Low nociceptor GRK2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rap1, protein kinase Cepsilon, and MEK/ERK. J Neurosci 30(38):12806–12815. doi:10.1523/JNEUROSCI.3142-10.2010

    Article  CAS  PubMed  Google Scholar 

  13. Penela P, Ribas C, Aymerich I, Eijkelkamp N, Barreiro O, Heijnen CJ, Kavelaars A, Sanchez-Madrid F, Mayor F Jr (2008) G protein-coupled receptor kinase 2 positively regulates epithelial cell migration. EMBO J 27(8):1206–1218. doi:10.1038/emboj.2008.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson JD, Pitcher JA (2013) G protein-coupled receptor kinase 2 (GRK2) is a Rho-activated scaffold protein for the ERK MAP kinase cascade. Cell Signal 25(12):2831–2839. doi:10.1016/j.cellsig.2013.08.031

    Article  CAS  PubMed  Google Scholar 

  15. Wan KF, Sambi BS, Tate R, Waters C, Pyne NJ (2003) The inhibitory gamma subunit of the type 6 retinal cGMP phosphodiesterase functions to link c-Src and G-protein-coupled receptor kinase 2 in a signaling unit that regulates p42/p44 mitogen-activated protein kinase by epidermal growth factor. J Biol Chem 278(20):18658–18663. doi:10.1074/jbc.M212103200

    Article  CAS  PubMed  Google Scholar 

  16. Lipfert J, Odemis V, Engele J (2013) Grk2 is an essential regulator of CXCR7 signalling in astrocytes. Cell Mol Neurobiol 33(1):111–118. doi:10.1007/s10571-012-9876-5

    Article  CAS  PubMed  Google Scholar 

  17. Lafarga V, Aymerich I, Tapia O, Mayor F Jr, Penela P (2012) A novel GRK2/HDAC6 interaction modulates cell spreading and motility. EMBO J 31(4):856–869. doi:10.1038/emboj.2011.466

    Article  CAS  PubMed  Google Scholar 

  18. Bliziotes M, Gunness M, Zhang X, Nissenson R, Wiren K (2000) Reduced G-protein-coupled-receptor kinase 2 activity results in impairment of osteoblast function. Bone 27(3):367–373

    Article  CAS  PubMed  Google Scholar 

  19. Chen W, Ren XR, Nelson CD, Barak LS, Chen JK, Beachy PA, de Sauvage F, Lefkowitz RJ (2004) Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 306(5705):2257–2260. doi:10.1126/science.1104135

    Article  CAS  PubMed  Google Scholar 

  20. Meloni AR, Fralish GB, Kelly P, Salahpour A, Chen JK, Wechsler-Reya RJ, Lefkowitz RJ, Caron MG (2006) Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol Cell Biol 26(20):7550–7560. doi:10.1128/MCB.00546-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Molnar C, Holguin H, Mayor F Jr, Ruiz-Gomez A, de Celis JF (2007) The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc Natl Acad Sci U S A 104(19):7963–7968. doi:10.1073/pnas.0702374104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Metaye T, Levillain P, Kraimps JL, Perdrisot R (2008) Immunohistochemical detection, regulation and antiproliferative function of G-protein-coupled receptor kinase 2 in thyroid carcinomas. J Endocrinol 198(1):101–110. doi:10.1677/JOE-07-0562

    Article  CAS  PubMed  Google Scholar 

  23. Peppel K, Jacobson A, Huang X, Murray JP, Oppermann M, Freedman NJ (2000) Overexpression of G protein-coupled receptor kinase-2 in smooth muscle cells attenuates mitogenic signaling via G protein-coupled and platelet-derived growth factor receptors. Circulation 102(7):793–799

    Article  CAS  PubMed  Google Scholar 

  24. Wei Z, Hurtt R, Gu T, Bodzin AS, Koch WJ, Doria C (2013) GRK2 negatively regulates IGF-1R signaling pathway and cyclins’ expression in HepG2 cells. J Cell Physiol 228(9):1897–1901. doi:10.1002/jcp.24353

    Article  CAS  PubMed  Google Scholar 

  25. Zheng H, Worrall C, Shen H, Issad T, Seregard S, Girnita A, Girnita L (2012) Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A 109(18):7055–7060. doi:10.1073/pnas.1118359109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu X, Koller S, Abd Alla J, Quitterer U (2013) Inhibition of G-protein-coupled receptor kinase 2 (GRK2) triggers the growth-promoting mitogen-activated protein kinase (MAPK) pathway. J Biol Chem 288(11):7738–7755. doi:10.1074/jbc.M112.428078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Penela P, Rivas V, Salcedo A, Mayor F Jr (2010) G protein-coupled receptor kinase 2 (GRK2) modulation and cell cycle progression. Proc Natl Acad Sci U S A 107(3):1118–1123. doi:10.1073/pnas.0905778107

    Article  CAS  PubMed  Google Scholar 

  28. Rivas V, Carmona R, Munoz-Chapuli R, Mendiola M, Nogues L, Reglero C, Miguel-Martin M, Garcia-Escudero R, Dorn GW 2nd, Hardisson D, Mayor F Jr, Penela P (2013) Developmental and tumoral vascularization is regulated by G protein-coupled receptor kinase 2. J Clin Invest 123(11):4714–4730. doi:10.1172/JCI67333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang X, Yang P, Ma L (2009) Kinase activity-independent regulation of cyclin pathway by GRK2 is essential for zebrafish early development. Proc Natl Acad Sci U S A 106(25):10183–10188. doi:10.1073/pnas.0812105106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lafarga V, Mayor F Jr, Penela P (2012) The interplay between G protein-coupled receptor kinase 2 (GRK2) and histone deacetylase 6 (HDAC6) at the crossroads of epithelial cell motility. Cell Adhes Migr 6(6):495–501. doi:10.4161/cam.21585

    Article  Google Scholar 

  31. Bulavin DV, Fornace AJ Jr (2004) p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res 92:95–118. doi:10.1016/S0065-230X(04)92005-2

    Article  CAS  PubMed  Google Scholar 

  32. Peregrin S, Jurado-Pueyo M, Campos PM, Sanz-Moreno V, Ruiz-Gomez A, Crespo P, Mayor F Jr, Murga C (2006) Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Curr Biol 16(20):2042–2047. doi:10.1016/j.cub.2006.08.083

    Article  CAS  PubMed  Google Scholar 

  33. Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC (2005) A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med 11(9):952–958. doi:10.1038/nm1289

    Article  CAS  PubMed  Google Scholar 

  34. Boyault C, Zhang Y, Fritah S, Caron C, Gilquin B, Kwon SH, Garrido C, Yao TP, Vourc’h C, Matthias P, Khochbin S (2007) HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 21(17):2172–2181. doi:10.1101/gad.436407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115(6):727–738

    Article  CAS  PubMed  Google Scholar 

  36. Cotton M, Claing A (2009) G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 21(7):1045–1053. doi:10.1016/j.cellsig.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  37. Vroon A, Heijnen CJ, Kavelaars A (2006) GRKs and arrestins: regulators of migration and inflammation. J Leukoc Biol 80(6):1214–1221. doi:10.1189/jlb.0606373

    Article  CAS  PubMed  Google Scholar 

  38. Arnon TI, Xu Y, Lo C, Pham T, An J, Coughlin S, Dorn GW, Cyster JG (2011) GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science 333(6051):1898–1903. doi:10.1126/science.1208248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Penela P, Murga C, Ribas C, Salcedo A, Jurado-Pueyo M, Rivas V, Aymerich I, Mayor F Jr (2008) G protein-coupled receptor kinase 2 (GRK2) in migration and inflammation. Arch Physiol Biochem 114(3):195–200. doi:10.1080/13813450802181039

    Article  CAS  PubMed  Google Scholar 

  40. Penela P, Ribas C, Aymerich I, Mayor F Jr (2009) New roles of G protein-coupled receptor kinase 2 (GRK2) in cell migration. Cell Adhes Migr 3(1):19–23

    Article  Google Scholar 

  41. Cant SH, Pitcher JA (2005) G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell 16(7):3088–3099. doi:10.1091/mbc.E04-10-0877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kahsai AW, Zhu S, Fenteany G (2010) G protein-coupled receptor kinase 2 activates radixin, regulating membrane protrusion and motility in epithelial cells. Biochim Biophys Acta 1803(2):300–310. doi:10.1016/j.bbamcr.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  43. Hoefen RJ, Berk BC (2006) The multifunctional GIT family of proteins. J Cell Sci 119(Pt 8):1469–1475. doi:10.1242/jcs.02925

    Article  CAS  PubMed  Google Scholar 

  44. Yin G, Zheng Q, Yan C, Berk BC (2005) GIT1 is a scaffold for ERK1/2 activation in focal adhesions. J Biol Chem 280(30):27705–27712. doi:10.1074/jbc.M502271200

    Article  CAS  PubMed  Google Scholar 

  45. Kaluza D, Kroll J, Gesierich S, Yao TP, Boon RA, Hergenreider E, Tjwa M, Rossig L, Seto E, Augustin HG, Zeiher AM, Dimmeler S, Urbich C (2011) Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J 30(20):4142–4156. doi:10.1038/emboj.2011.298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Etienne-Manneville S (2010) From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 22(1):104–111. doi:10.1016/j.ceb.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  47. Penela P, Lafarga V, Tapia O, Rivas V, Nogues L, Lucas E, Vila-Bedmar R, Murga C, Mayor F, Jr. (2012) Roles of GRK2 in cell signaling beyond GPCR desensitization: GRK2-HDAC6 interaction modulates cell spreading and motility. Sci Signal 5 (224):pt3. doi:10.1126/scisignal.2003098

    Google Scholar 

  48. Duong V, Bret C, Altucci L, Mai A, Duraffourd C, Loubersac J, Harmand PO, Bonnet S, Valente S, Maudelonde T, Cavailles V, Boulle N (2008) Specific activity of class II histone deacetylases in human breast cancer cells. Mol Cancer Res 6(12):1908–1919. doi:10.1158/1541-7786.MCR-08-0299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee YS, Lim KH, Guo X, Kawaguchi Y, Gao Y, Barrientos T, Ordentlich P, Wang XF, Counter CM, Yao TP (2008) The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res 68(18):7561–7569. doi:10.1158/0008-5472.CAN-08-0188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang M, Xiang S, Joo HY, Wang L, Williams KA, Liu W, Hu C, Tong D, Haakenson J, Wang C, Zhang S, Pavlovicz RE, Jones A, Schmidt KH, Tang J, Dong H, Shan B, Fang B, Radhakrishnan R, Glazer PM, Matthias P, Koomen J, Seto E, Bepler G, Nicosia SV, Chen J, Li C, Gu L, Li GM, Bai W, Wang H, Zhang X (2014) HDAC6 deacetylates and ubiquitinates MSH2 to maintain proper levels of MutSalpha. Mol Cell 55(1):31–46. doi:10.1016/j.molcel.2014.04.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. doi:10.1016/j.cell.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  52. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314(1):15–23. doi:10.1007/s00441-003-0745-x

    Article  PubMed  Google Scholar 

  54. Rivas V, Nogues L, Reglero C, Mayor F Jr, Penela P (2014) Role of G protein-coupled receptor kinase 2 in tumoral angiogenesis. Mol Cell Oncol 1(4):e969166. doi:10.4161/23723548.2014.969166

    Article  PubMed  PubMed Central  Google Scholar 

  55. van Meeteren LA, Goumans MJ, ten Dijke P (2011) TGF-beta receptor signaling pathways in angiogenesis; emerging targets for anti-angiogenesis therapy. Curr Pharm Biotechnol 12(12):2108–2120

    Article  PubMed  Google Scholar 

  56. Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 12(4):817–828

    Article  CAS  PubMed  Google Scholar 

  57. Orlova VV, Liu Z, Goumans MJ, ten Dijke P (2011) Controlling angiogenesis by two unique TGF-beta type I receptor signaling pathways. Histol Histopathol 26(9):1219–1230

    CAS  PubMed  Google Scholar 

  58. Ho J, Cocolakis E, Dumas VM, Posner BI, Laporte SA, Lebrun JJ (2005) The G protein-coupled receptor kinase-2 is a TGFbeta-inducible antagonist of TGFbeta signal transduction. EMBO J 24(18):3247–3258. doi:10.1038/sj.emboj.7600794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ho J, Chen H, Lebrun JJ (2007) Novel dominant negative Smad antagonists to TGFbeta signaling. Cell Signal 19(7):1565–1574. doi:10.1016/j.cellsig.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  60. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3(11):807–821. doi:10.1038/nrc1208

    Article  CAS  PubMed  Google Scholar 

  61. Liu IM, Schilling SH, Knouse KA, Choy L, Derynck R, Wang XF (2009) TGFbeta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. EMBO J 28(2):88–98. doi:10.1038/emboj.2008.266

    Article  CAS  PubMed  Google Scholar 

  62. So CH, Michal A, Komolov KE, Luo J, Benovic JL (2013) G protein-coupled receptor kinase 2 (GRK2) is localized to centrosomes and mediates epidermal growth factor-promoted centrosomal separation. Mol Biol Cell 24(18):2795–2806. doi:10.1091/mbc.E13-01-0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Salcedo A, Mayor F Jr, Penela P (2006) Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 25(20):4752–4762. doi:10.1038/sj.emboj.7601351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang C, Chen X, Li Y, SWA H, Wu J, Shi X, Liu X, Kim S (2014) si-RNA-mediated silencing of ADRBK1 gene attenuates breast cancer cell proliferation. Cancer Biother Radiopharm 29(8):303–309. doi:10.1089/cbr.2014.1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, Smith RJ, Smith SR (2011) Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metab 96(6):1654–1663. doi:10.1210/jc.2011-0585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ciccarelli M, Cipolletta E, Iaccarino G (2012) GRK2 at the control shaft of cellular metabolism. Curr Pharm Des 18(2):121–127

    Article  CAS  PubMed  Google Scholar 

  67. Vila-Bedmar R, Garcia-Guerra L, Nieto-Vazquez I, Mayor F Jr, Lorenzo M, Murga C, Fernandez-Veledo S (2012) GRK2 contribution to the regulation of energy expenditure and brown fat function. FASEB Journal 26(8):3503–3514. doi:10.1096/fj.11-202267

    Article  CAS  PubMed  Google Scholar 

  68. Woodall MC, Ciccarelli M, Woodall BP, Koch WJ (2014) G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 114(10):1661–1670. doi:10.1161/CIRCRESAHA.114.300513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R, Jurado-Pueyo M, Zalba G, Diez J, Murga C, Fernandez-Veledo S, Mayor F Jr, Lorenzo M (2010) G protein-coupled receptor kinase 2 plays a relevant role in insulin resistance and obesity. Diabetes 59(10):2407–2417. doi:10.2337/db10-0771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cipolletta E, Campanile A, Santulli G, Sanzari E, Leosco D, Campiglia P, Trimarco B, Iaccarino G (2009) The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc Res 84(3):407–415. doi:10.1093/cvr/cvp252

    Article  CAS  PubMed  Google Scholar 

  71. Anis Y, Leshem O, Reuveni H, Wexler I, Ben Sasson R, Yahalom B, Laster M, Raz I, Ben Sasson S, Shafrir E, Ziv E (2004) Antidiabetic effect of novel modulating peptides of G-protein-coupled kinase in experimental models of diabetes. Diabetologia 47(7):1232–1244. doi:10.1007/s00125-004-1444-1

    Article  CAS  PubMed  Google Scholar 

  72. Vila-Bedmar R, Cruces-Sande M, Lucas E, Willemen HLD, Heijnen CJ, Kavelaars A, Mayor F, Jr., Murga C (2015) Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2. Sci Signal 8 (386): (in press)

    Google Scholar 

  73. Owens DR, Monnier L, Bolli GB (2013) Differential effects of GLP-1 receptor agonists on components of dysglycaemia in individuals with type 2 diabetes mellitus. Diabetes Metabol 39(6):485–496. doi:10.1016/j.diabet.2013.09.004

    Article  CAS  Google Scholar 

  74. Jorgensen R, Norklit Roed S, Heding A, Elling CE (2011) Beta-arrestin2 as a competitor for GRK2 interaction with the GLP-1 receptor upon receptor activation. Pharmacology 88(3-4):174–181. doi:10.1159/000330742

    Article  CAS  PubMed  Google Scholar 

  75. Offermanns S (2014) Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol 54:407–434. doi:10.1146/annurev-pharmtox-011613-135945

    Article  CAS  PubMed  Google Scholar 

  76. Tonack S, Tang C, Offermanns S (2013) Endogenous metabolites as ligands for G protein-coupled receptors modulating risk factors for metabolic and cardiovascular disease. Am J Physiol Heart Circ Physiol 304(4):H501–H513. doi:10.1152/ajpheart.00641.2012

    Article  CAS  PubMed  Google Scholar 

  77. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698. doi:10.1016/j.cell.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burns RN, Singh M, Senatorov IS, Moniri NH (2014) Mechanisms of homologous and heterologous phosphorylation of FFA receptor 4 (GPR120): GRK6 and PKC mediate phosphorylation of Thr(3)(4)(7), Ser(3)(5)(0), and Ser(3)(5)(7) in the C-terminal tail. Biochem Pharmacol 87(4):650–659. doi:10.1016/j.bcp.2013.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burant CF (2013) Activation of GPR40 as a therapeutic target for the treatment of type 2 diabetes. Diabetes Care 36(Suppl 2):S175–S179. doi:10.2337/dcS13-2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Usui I, Imamura T, Babendure JL, Satoh H, Lu JC, Hupfeld CJ, Olefsky JM (2005) G protein-coupled receptor kinase 2 mediates endothelin-1-induced insulin resistance via the inhibition of both Galphaq/11 and insulin receptor substrate-1 pathways in 3T3-L1 adipocytes. Mol Endocrinol 19(11):2760–2768. doi:10.1210/me.2004-0429

    Article  CAS  PubMed  Google Scholar 

  81. Shahid G, Hussain T (2007) GRK2 negatively regulates glycogen synthesis in mouse liver FL83B cells. J Biol Chem 282(28):20612–20620. doi:10.1074/jbc.M700744200

    Article  CAS  PubMed  Google Scholar 

  82. Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, Gold JI, Gumpert A, Chen M, Otis NJ, Dorn GW 2nd, Trimarco B, Iaccarino G, Koch WJ (2011) G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation 123(18):1953–1962. doi:10.1161/CIRCULATIONAHA.110.988642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fusco A, Santulli G, Sorriento D, Cipolletta E, Garbi C, Dorn GW 2nd, Trimarco B, Feliciello A, Iaccarino G (2012) Mitochondrial localization unveils a novel role for GRK2 in organelle biogenesis. Cell Signal 24(2):468–475. doi:10.1016/j.cellsig.2011.09.026

    Article  CAS  PubMed  Google Scholar 

  84. Huang ZM, Gao E, Chuprun JK, Koch WJ (2014) GRK2 in the heart: a GPCR kinase and beyond. Antioxid Redox Signal 21(14):2032–2043. doi:10.1089/ars.2014.5876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Galgani JE, Moro C, Ravussin E (2008) Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab 295(5):E1009–E1017. doi:10.1152/ajpendo.90558.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Charbonneau A, Unson CG, Lavoie JM (2007) High-fat diet-induced hepatic steatosis reduces glucagon receptor content in rat hepatocytes: potential interaction with acute exercise. J Physiol 579(Pt 1):255–267. doi:10.1113/jphysiol.2006.121954

    Article  CAS  PubMed  Google Scholar 

  87. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163. doi:10.2337/dc09-S302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Garcia-Guerra L, Vila-Bedmar R, Carrasco-Rando M, Cruces-Sande M, Martin M, Ruiz-Gomez A, Ruiz-Gomez M, Lorenzo M, Fernandez-Veledo S, Mayor F Jr, Murga C, Nieto-Vazquez I (2014) Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. J Mol Cell Biol 6(4):299–311. doi:10.1093/jmcb/mju025

    Article  CAS  PubMed  Google Scholar 

  89. Penela P, Murga C, Ribas C, Tutor AS, Peregrin S, Mayor F Jr (2006) Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res 69(1):46–56. doi:10.1016/j.cardiores.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  90. Sato PY, Chuprun JK, Schwartz M, Koch WJ (2015) The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 95(2):377–404. doi:10.1152/physrev.00015.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Avendano MS, Lucas E, Jurado-Pueyo M, Martinez-Revelles S, Vila-Bedmar R, Mayor F Jr, Salaices M, Briones AM, Murga C (2014) Increased nitric oxide bioavailability in adult GRK2 hemizygous mice protects against angiotensin II-induced hypertension. Hypertension 63(2):369–375. doi:10.1161/HYPERTENSIONAHA.113.01991

    Article  CAS  PubMed  Google Scholar 

  92. Taguchi K, Kobayashi T, Matsumoto T, Kamata K (2011) Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice. Am J Physiol Heart Circ Physiol 301(2):H571–H583. doi:10.1152/ajpheart.01189.2010, ajpheart.01189.2010 [pii]

    Article  CAS  PubMed  Google Scholar 

  93. Taguchi K, Kobayashi T, Takenouchi Y, Matsumoto T, Kamata K (2011) Angiotensin II causes endothelial dysfunction via the GRK2/Akt/eNOS pathway in aortas from a murine type 2 diabetic model. Pharmacol Res 64(5):535–546. doi:10.1016/j.phrs.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  94. Taguchi K, Matsumoto T, Kamata K, Kobayashi T (2012) G protein-coupled receptor kinase 2, with beta-arrestin 2, impairs insulin-induced Akt/endothelial nitric oxide synthase signaling in ob/ob mouse aorta. Diabetes 61(8):1978–1985. doi:10.2337/db11-1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Taguchi K, Matsumoto T, Kamata K, Kobayashi T (2012) Inhibitor of G protein-coupled receptor kinase 2 normalizes vascular endothelial function in type 2 diabetic mice by improving beta-arrestin 2 translocation and ameliorating Akt/eNOS signal dysfunction. Endocrinology 153(7):2985–2996. doi:10.1210/en.2012-1101

    Article  CAS  PubMed  Google Scholar 

  96. Taguchi K, Sakata K, Ohashi W, Imaizumi T, Imamura J, Hattori Y (2014) Tonic inhibition by G protein-coupled receptor kinase 2 of Akt/endothelial nitric oxide synthase signaling in human vascular endothelial cells under conditions of hyperglycemia with high insulin levels. J Pharmacol Exp Ther 349(2):199–208. doi:10.1016/jpet.113.211854 [pii]

  97. Luan B, Zhao J, Wu H, Duan B, Shu G, Wang X, Li D, Jia W, Kang J, Pei G (2009) Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature 457(7233):1146–1149. doi:10.1038/nature07617

    Article  CAS  PubMed  Google Scholar 

  98. Taguchi K, Matsumoto T, Kamata K, Kobayashi T (2013) Suppressed G-protein-coupled receptor kinase 2 activity protects female diabetic-mouse aorta against endothelial dysfunction. Acta Physiol (Oxford) 207(1):142–155. doi:10.1111/j.1748-1716.2012.02473.x

    Article  CAS  Google Scholar 

  99. Philipp M, Berger IM, Just S, Caron MG (2014) Overlapping and opposing functions of G protein-coupled receptor kinase 2 (GRK2) and GRK5 during heart development. J Biol Chem 289(38):26119–26130. doi:10.1074/jbc.M114.551952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Matkovich SJ, Diwan A, Klanke JL, Hammer DJ, Marreez Y, Odley AM, Brunskill EW, Koch WJ, Schwartz RJ, Dorn GW 2nd (2006) Cardiac-specific ablation of G-protein receptor kinase 2 redefines its roles in heart development and beta-adrenergic signaling. Circ Res 99(9):996–1003. doi:10.1161/01.RES.0000247932.71270.2c

    Article  CAS  PubMed  Google Scholar 

  101. Raake PW, Vinge LE, Gao E, Boucher M, Rengo G, Chen X, DeGeorge BR Jr, Matkovich S, Houser SR, Most P, Eckhart AD, Dorn GW 2nd, Koch WJ (2008) G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ Res 103(4):413–422. doi:10.1161/CIRCRESAHA.107.168336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA, Lefkowitz RJ (1995) Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 268(5215):1350–1353

    Article  CAS  PubMed  Google Scholar 

  103. Tachibana H, Naga Prasad SV, Lefkowitz RJ, Koch WJ, Rockman HA (2005) Level of beta-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation 111(5):591–597. doi:10.1161/01.CIR.0000142291.70954.DF

    Article  CAS  PubMed  Google Scholar 

  104. Brinks H, Boucher M, Gao E, Chuprun JK, Pesant S, Raake PW, Huang ZM, Wang X, Qiu G, Gumpert A, Harris DM, Eckhart AD, Most P, Koch WJ (2010) Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms. Circ Res 107(9):1140–1149. doi:10.1161/CIRCRESAHA.110.221010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ, Ross J Jr, Lefkowitz RJ, Koch WJ (1998) Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci U S A 95(12):7000–7005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Harding VB, Jones LR, Lefkowitz RJ, Koch WJ, Rockman HA (2001) Cardiac beta ARK1 inhibition prolongs survival and augments beta blocker therapy in a mouse model of severe heart failure. Proc Natl Acad Sci U S A 98(10):5809–5814. doi:10.1073/pnas.091102398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schumacher SM, Gao E, Zhu W, Chen X, Chuprun JK, Feldman AM, Tesmer JJ, Koch WJ (2015) Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction. Sci Transl Med 7(277):277ra231. doi:10.1126/scitranslmed.aaa0154

    Article  CAS  Google Scholar 

  108. Rockman HA, Choi DJ, Rahman NU, Akhter SA, Lefkowitz RJ, Koch WJ (1996) Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc Natl Acad Sci U S A 93(18):9954–9959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rockman HA, Choi DJ, Akhter SA, Jaber M, Giros B, Lefkowitz RJ, Caron MG, Koch WJ (1998) Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem 273(29):18180–18184

    Article  CAS  PubMed  Google Scholar 

  110. Lucas E, Jurado-Pueyo M, Fortuno MA, Fernandez-Veledo S, Vila-Bedmar R, Jimenez-Borreguero LJ, Lazcano JJ, Gao E, Gomez-Ambrosi J, Fruhbeck G, Koch WJ, Diez J, Mayor F Jr, Murga C (2014) Downregulation of G protein-coupled receptor kinase 2 levels enhances cardiac insulin sensitivity and switches on cardioprotective gene expression patterns. Biochim Biophys Acta 1842:2448–2456. doi:10.1016/j.bbadis.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  111. Fu Q, Xu B, Liu Y, Parikh D, Li J, Li Y, Zhang Y, Riehle C, Zhu Y, Rawlings T, Shi Q, Clark RB, Chen X, Abel ED, Xiang YK (2014) Insulin inhibits cardiac contractility by inducing a Gi-biased beta2 adrenergic signaling in hearts. Diabetes. doi:10.2337/db13-1763

    PubMed Central  Google Scholar 

  112. Lymperopoulos A, Rengo G, Koch WJ (2007) Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med 13(12):503–511. doi:10.1016/j.molmed.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  113. Wang Y, Gao E, Lau WB, Wang Y, Liu G, Li JJ, Wang X, Yuan Y, Koch WJ, Ma XL (2015) G-protein-coupled receptor kinase 2-mediated desensitization of adiponectin receptor 1 in failing heart. Circulation 131(16):1392–1404. doi:10.1161/CIRCULATIONAHA.114.015248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. MacDonnell SM, Kubo H, Crabbe DL, Renna BF, Reger PO, Mohara J, Smithwick LA, Koch WJ, Houser SR, Libonati JR (2005) Improved myocardial beta-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation 111(25):3420–3428. doi:10.1161/CIRCULATIONAHA.104.505784

    Article  CAS  PubMed  Google Scholar 

  115. Hata JA, Williams ML, Schroder JN, Lima B, Keys JR, Blaxall BC, Petrofski JA, Jakoi A, Milano CA, Koch WJ (2006) Lymphocyte levels of GRK2 (betaARK1) mirror changes in the LVAD-supported failing human heart: lower GRK2 associated with improved beta-adrenergic signaling after mechanical unloading. J Card Fail 12(5):360–368. doi:10.1016/j.cardfail.2006.02.011

    Article  CAS  PubMed  Google Scholar 

  116. Rengo G, Pagano G, Paolillo S, de Lucia C, Femminella GD, Liccardo D, Cannavo A, Formisano R, Petraglia L, Komici K, Rengo F, Trimarco B, Ferrara N, Leosco D, Perrone-Filardi P (2015) Impact of diabetes mellitus on lymphocyte GRK2 protein levels in patients with heart failure. Eur J Clin Investig 45(2):187–195. doi:10.1111/eci.12395

    Article  CAS  Google Scholar 

  117. Lucas E, Jurado-Pueyo M, Vila-Bedmar R, Díez J, Mayor F Jr, Murga C (2015) Linking cardiac insulin resistance and heart failure: GRK2 as an integrative node. Cardiovasc Regen Med 2:e586. doi:10.14800/crm.586

    Google Scholar 

Download references

Acknowledgments

Our laboratory is supported by Grants SAF2014-55511-R (to F.M. and C.M.) from Ministerio de Economía y Competitividad (MINECO), Spain; PI14/00435 from Instituto de Salud Carlos III to P.P., S2010/BMD-2332 (INDISNET) from Comunidad de Madrid, Spain (to F.M.); The Cardiovascular Network (RD12/0042/0012), from Ministerio Sanidad y Consumo-Instituto Carlos III, Spain (to F.M.), an European Foundation for the Study of Diabetes (EFSD) Novo Nordisk Partnership for Diabetes Research in Europe Grant (to F.M.); Fundación Ramón Areces (to C.M. and P.P.). We also acknowledge the support of a Contrato para la Formación Postdoctoral from MINECO to R.V.B., and institutional support from Fundación Ramón Areces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Mayor Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mayor, F. et al. (2016). Cell-Type Specific GRK2 Interactomes: Pathophysiological Implications. In: Gurevich, V., Gurevich, E., Tesmer, J. (eds) G Protein-Coupled Receptor Kinases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3798-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3798-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3796-7

  • Online ISBN: 978-1-4939-3798-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics