Skip to main content

Methods for Visualization of Neuronal Cilia

  • Protocol
  • First Online:
Cilia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1454))

Abstract

Neuroscientists have been captivated by cilia ever since these slender, microtubule-based projections on the cell body were found to play critical roles in neuronal specification, maintenance, and function. In mammals, the most common cilia marker, acetylated α-tubulin, is extremely difficult to detect in neuronal cilia. Here, we describe methods to detect neuronal cilia in culture, in fixed sections, and in vivo, taking advantage of transgenic mice carrying fluorescently tagged cilia proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H + -activated currents in hippocampal neurons. J Biol Chem 279(18):18296–18305

    Article  CAS  PubMed  Google Scholar 

  2. Berbari NF, Bishop GA, Askwith CC, Lewis JS, Mykytyn K (2007) Hippocampal neurons possess primary cilia in culture. J Neurosci Res 85(5):1095–1100

    Article  CAS  PubMed  Google Scholar 

  3. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567–576

    Article  CAS  PubMed  Google Scholar 

  4. Domire JS, Green JA, Lee KG, Johnson AD, Askwith CC, Mykytyn K (2011) Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell Mol Life Sci 68(17):2951–2960

    Article  CAS  PubMed  Google Scholar 

  5. Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH Jr, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34(3):463–477

    Article  CAS  PubMed  Google Scholar 

  6. Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K (2008) Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell 19(4):1540–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bishop GA, Berbari NF, Lewis J, Mykytyn K (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505(5):562–571

    Article  PubMed  Google Scholar 

  8. Brailov I, Bancila M, Brisorgueil MJ, Miquel MC, Hamon M, Verge D (2000) Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res 872(1-2):271–275

    Article  CAS  PubMed  Google Scholar 

  9. Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12(5):767–778

    Article  CAS  PubMed  Google Scholar 

  10. Handel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, Hollt V (1999) Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89(3):909–926

    Article  CAS  PubMed  Google Scholar 

  11. Koemeter-Cox AI, Sherwood TW, Green JA, Steiner RA, Berbari NF, Yoder BK, Kauffman AS, Monsma PC, Brown A, Askwith CC, Mykytyn K (2014) Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc Natl Acad Sci U S A 111(28):10335–10340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Domire JS, Mykytyn K (2009) Markers for neuronal cilia. Methods Cell Biol 91:111–121

    Article  CAS  PubMed  Google Scholar 

  13. Carson FL, Cappellano CH (2015) Histotechnology a self instructional text, 4th edn. ASCP, Chicago, IL, p 368

    Google Scholar 

  14. Berbari NF, Malarkey EB, Yazdi SM, McNair AD, Kippe JM, Croyle MJ, Kraft TW, Yoder BK (2014) Hippocampal and cortical primary cilia are required for aversive memory in mice. PLoS One 9(9), e106576

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berbari NF, Pasek RC, Malarkey EB, Yazdi SM, McNair AD, Lewis WR, Nagy TR, Kesterson RA, Yoder BK (2013) Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci U S A 110(19):7796–7801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Connor AK, Malarkey EB, Berbari NF, Croyle MJ, Haycraft CJ, Bell PD, Hohenstein P, Kesterson RA, Yoder BK (2013) An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue. Cilia 2(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE (2013) Primary cilia are specialized calcium signalling organelles. Nature 504(7479):311–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bangs FK, Schrode N, Hadjantonakis AK, Anderson KV (2015) Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol 17(2):113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berman SA, Wilson NF, Haas NA, Lefebvre PA (2003) A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr Biol 13(13):1145–1149

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen RL, Tam LW, Lefebvre PA (2005) The LF1 gene of Chlamydomonas reinhardtii encodes a novel protein required for flagellar length control. Genetics 169(3):1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tam LW, Ranum PT, Lefebvre PA (2013) CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas. Mol Biol Cell 24(5):588–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tam LW, Wilson NF, Lefebvre PA (2007) A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol 176(6):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Falcon-Urrutia P, Carrasco CM, Lois P, Palma V, Roth AD (2015) Shh signaling through the primary cilium modulates rat oligodendrocyte differentiation. PLoS One 10(7), e0133567

    Article  PubMed Central  Google Scholar 

  24. Menzl I, Lebeau L, Pandey R, Hassounah NB, Li FW, Nagle R, Weihs K, McDermott KM (2014) Loss of primary cilia occurs early in breast cancer development. Cilia 3:7

    Article  PubMed Central  Google Scholar 

  25. Piotrowska-Nitsche K, Caspary T (2012) Live imaging of individual cell divisions in mouse neuroepithelium shows asymmetry in cilium formation and sonic hedgehog response. Cilia 1:1

    Article  Google Scholar 

  26. Mukhopadhyay S, Wen X, Ratti N, Loktev A, Rangell L, Scales SJ, Jackson PK (2013) The ciliary G-protein-coupled receptor Gpr161 negatively regulates the sonic hedgehog pathway via cAMP signaling. Cell 152(1-2):210–223

    Article  CAS  Google Scholar 

  27. Seo S, Zhang Q, Bugge K, Breslow DK, Searby CC, Nachury MV, Sheffield VC (2011) A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and smoothened. PLoS Genet 7(11), e1002358

    Article  CAS  PubMed Central  Google Scholar 

  28. Stratigopoulos G, Martin Carli JF, O'Day DR, Wang L, Leduc CA, Lanzano P, Chung WK, Rosenbaum M, Egli D, Doherty DA, Leibel RL (2014) Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab 19(5):767–779

    Article  CAS  PubMed Central  Google Scholar 

  29. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K (2008) Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci U S A 105(11):4242–4246

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Special thanks to Cheryl Timms Strauss for editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Caspary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Caspary, T., Marazziti, D., Berbari, N.F. (2016). Methods for Visualization of Neuronal Cilia. In: Satir, P., Christensen, S. (eds) Cilia. Methods in Molecular Biology, vol 1454. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3789-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3789-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3787-5

  • Online ISBN: 978-1-4939-3789-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics