Skip to main content

Random Transposon Mutagenesis for Cell-Envelope Resistant to Phage Infection

  • Protocol
  • First Online:
Bacterial Cell Wall Homeostasis

Abstract

In order to identify host components involved in the infective process of bacteriophages, we developed a wide-range strategy to obtain cell envelope mutants, using Escherichia coli W3110 and its specific phage mEp213. The strategy consisted in four steps: (1) random mutagenesis using transposon miniTn10Kmr; (2) selection of phage-resistant mutants by replica-plating; (3) electroporation of the phage-resistant mutants with mEp213 genome, followed by selection of those allowing phage development; and (4) sequencing of the transposon-disrupted genes. This strategy allowed us to distinguish the host factors related to phage development or multiplication within the cell, from those involved in phage infection at the level of the cell envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kleckner N, Bender J, Gottesman S (1991) Uses of transposons with emphasis on Tn10. Methods Enzymol 204:139–180

    Article  CAS  PubMed  Google Scholar 

  2. Kwon YM, Ricke SC (2000) Efficient amplification of multiple transposon-flanking sequences. J Microbiol Methods 41:195–199

    Article  CAS  PubMed  Google Scholar 

  3. Reyes-Cortes R, Martínez-Peñafiel E, Martínez-Pérez F, De la Garza M, Kameyama L (2012) A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology 158:3063–3071

    Article  CAS  PubMed  Google Scholar 

  4. Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36:525–557

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K-12. Genetics 39:440–452

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  8. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  9. Uc-Mass A, Loeza EJ, De la Garza M, Guarneros G, Hernández-Sánchez J, Kameyama L (2004) An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. Virology 329: 425–433

    Article  CAS  PubMed  Google Scholar 

  10. Kameyama L, Fernández L, Calderón J, Ortiz-Rojas A, Patterson TA (1999) Characterization of wild lambdoid bacteriophages: detection of the wide distribution of phage immunity groups and identification of the Nus-dependent, nonlambdoid phage group. Virology 263:100–111

    Article  CAS  PubMed  Google Scholar 

  11. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  12. Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113

    Article  CAS  PubMed  Google Scholar 

  13. Polayes D, Huges AJ Jr (1974) Efficient protein expression and simple purification using the pPROEX-1 super(TM) system. Focus 16:81–84

    Google Scholar 

  14. Dhillon EK, Dhillon TS (1974) N-methyl-N′-nitro-N-nitrosoguanidine and hydroxylamine induced mutants of the rII region of phage T4. Mutat Res 22:223–233

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We specially thank to Dr. F. Fernández-Ramírez (Hospital General de México, SSA) for proofreading of the manuscript and Dr. M. de la Garza (CINVESTAV-IPN) for providing access to her laboratory facilities. We acknowledge M.Sc., M.A., Guadalupe Aguilar-González (CINVESTAV-IPN) for technical assistance in DNA sequencing. This work was supported by Secretaría de Ciencia, Tecnología e Innovación de la Ciudad de México (SeCyTI), grant No. PICSA11-107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Kameyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Reyes-Cortés, R., Arguijo-Hernández, E.S., Carballo-Ontiveros, M.A., Martínez-Peñafiel, E., Kameyama, L. (2016). Random Transposon Mutagenesis for Cell-Envelope Resistant to Phage Infection. In: Hong, HJ. (eds) Bacterial Cell Wall Homeostasis. Methods in Molecular Biology, vol 1440. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3676-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3676-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3674-8

  • Online ISBN: 978-1-4939-3676-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics