Skip to main content

BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells

  • Protocol
  • First Online:
High Throughput Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1439))

Abstract

Bioluminescence resonance energy transfer (BRET) is a prominent biophysical technology for monitoring molecular interactions, and has been widely used to study protein-protein interactions (PPI) in live cells. This technology requires proteins of interest to be associated with an energy donor (i.e., luciferase) and an acceptor (e.g., fluorescent protein) molecule. Upon interaction of the proteins of interest, the donor and acceptor will be brought into close proximity and energy transfer of chemical reaction-induced luminescence to its corresponding acceptor will result in an increased emission at an acceptor-defined wavelength, generating the BRET signal. We leverage the advantages of the superior optical properties of the NanoLuc® luciferase (NLuc) as a BRET donor coupled with Venus, a yellow fluorescent protein, as acceptor. We term this NLuc-based BRET platform “BRETn”. BRETn has been demonstrated to have significantly improved assay performance, compared to previous BRET technologies, in terms of sensitivity and scalability. This chapter describes a step-by-step practical protocol for developing a BRETn assay in a multi-well plate format to detect PPIs in live mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu Y, Kanauchi A, von Arnim AG, Piston DW, Johnson CH (2003) Bioluminescence resonance energy transfer: monitoring protein-protein interactions in living cells. Methods Enzymol 360:289–301

    Article  CAS  Google Scholar 

  2. Pfleger KDG, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3(3):165–174. doi:10.1038/Nmeth841

    Article  CAS  Google Scholar 

  3. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96(1):151–156

    Article  CAS  Google Scholar 

  4. Couturier C, Deprez B (2012) Setting up a bioluminescence resonance energy transfer high throughput screening assay to search for protein/protein interaction inhibitors in mammalian cells. Front Endocrinol 3:1–13. doi:10.3389/fendo.2012.00100

    Article  Google Scholar 

  5. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857. doi:10.1021/Cb3002478

    Article  CAS  Google Scholar 

  6. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90. doi:10.1038/nbt0102-87

    Article  CAS  Google Scholar 

  7. Mo X-L, Luo Y, Ivanov AA, Su R, Havel JJ, Li Z, Khuri F, Du Y, Fu H (2015) Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high throughput biosensor platform. J Mol Cell Biol. doi: 10.1093/jmcb/mjv064

    Google Scholar 

  8. Johnson R, Halder G (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13(1):63–79. doi:10.1038/nrd4161

    Article  CAS  Google Scholar 

  9. Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257. doi:10.1038/nrc3458

    Article  CAS  Google Scholar 

  10. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122(3):421–434. doi:10.1016/j.cell.2005.06.007

    Article  CAS  Google Scholar 

  11. Zhang Z, Lin Z, Zhou Z, Shen HC, Yan SF, Mayweg AV, Xu Z, Qin N, Wong JC, Zhang Z, Rong Y, Fry DC, Hu T (2014) Structure-based design and synthesis of potent cyclic peptides inhibiting the YAP-TEAD protein-protein interaction. ACS Med Chem Lett 5(9):993–998. doi:10.1021/ml500160m

    Article  CAS  Google Scholar 

  12. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26(12):1300–1305. doi:10.1101/gad.192856.112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kun-Liang Guan for providing YAP1, and Dr. Atsushi Miyawaki for providing Venus cDNA plasmid as cloning template. We would like to thank Drs. Jonathan Havel and Zenggang Li for their contributions in generating NLuc destination vector and Venus-YAP1 construct. We also thank Dr. Yuhong Du for her constructive inputs to make this assay work, and Dr. Margaret Johns for editing the text. This study is supported in part by National Cancer Institute to H.F. (NIH U01CA168449) and to the Winship Cancer Institute of Emory University (NIH 5P30CA138292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Lei Mo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mo, XL., Fu, H. (2016). BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells. In: Janzen, W. (eds) High Throughput Screening. Methods in Molecular Biology, vol 1439. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3673-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3673-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3671-7

  • Online ISBN: 978-1-4939-3673-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics