Skip to main content

Purification and Functional Reconstitution of Box H/ACA Ribonucleoprotein Particles

  • Protocol
  • First Online:
RNA-Protein Complexes and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1421))

Abstract

Pseudouridylation is the most abundant and widespread RNA modification, and it plays an important role in modulating the structure and function of RNA. In eukaryotes and archaea, RNA pseudouridylation is catalyzed largely by box H/ACA ribonucleoproteins (RNPs), a distinct group of RNA–protein complexes each consisting of a unique RNA and four common proteins. The RNA component of the complex serves as a guide that base-pairs with its substrate RNA and specifies the target uridine to be modified. In order to systematically study the function and mechanism of pseudouridylation, it is desirable to have a reconstitution system in which biochemically purified/reconstituted box H/ACA RNPs are capable of introducing pseudouridines into an RNA at any target site. Here, we describe a method for the reconstitution of functional box H/ACA RNPs using designer box H/ACA guide RNAs, which in principle can be adopted to reconstitute other RNA–protein complexes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis DR (1995) Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res 23:5020–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davis FF, Allen FW (1957) Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem 227:907–915

    CAS  PubMed  Google Scholar 

  3. Charette M, Gray MW (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49:341–351

    Article  CAS  PubMed  Google Scholar 

  4. Newby MI, Greenbaum NL (2001) A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA 7:833–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, Kierzek R (2014) The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res 42:3492–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reddy R, Busch H (1988) Small nuclear RNAs: RNA sequences, structure, and modifications. In: Birnsteil ML (ed) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag Press, Heidelberg, pp 1–37

    Chapter  Google Scholar 

  7. Ofengand J, Fournier MJ (1998) The pseudouridine residues of rRNA: number, location, biosynthesis and function. In: Grosjean H, Benne R (eds) Modification and Editing of RNA: the Alteration of RNA structure and Function. ASM press, Washington, D.C., pp 229–253

    Chapter  Google Scholar 

  8. Grosjean H, Sprinzl M, Steinberg S (1995) Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie 77:139–141

    Article  CAS  PubMed  Google Scholar 

  9. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. King TH, Liu B, McCully RR, Fournier MJ (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11:425–435

    Article  CAS  PubMed  Google Scholar 

  12. Yu AT, Ge J, Yu YT (2011) Pseudouridines in spliceosomal snRNAs. Protein Cell 2:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karijolich J, Yu YT (2008) Insight into the protein components of the box H/ACA RNP. Curr Proteomics 5:129–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ge J, Yu YT (2013) RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 38:210–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karijolich J, Yu YT (2011) Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474:395–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernandez IS, Ng CL, Kelley AC, Wu G, Yu YT, Ramakrishnan V (2013) Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 500:107–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma X, Yang C, Alexandrov A, Grayhack EJ, Behm-Ansmant I, Yu YT (2005) Pseudouri-dylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism. EMBO J 24:2403–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao M, Yang C, Schattner P, Yu YT (2009) Functionality and substrate specificity of human box H/ACA guide RNAs. RNA 15:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karijolich J, Stephenson D, Yu YT (2007) Biochemical purification of box H/ACA RNPs involved in pseudouridylation. Methods Enzymol 425:241–262

    Article  PubMed  Google Scholar 

  20. Alexandrov A, Grayhack EJ, Phizicky EM (2005) tRNA m7G methyltransferase Trm8p/Trm82p: evidence linking activity to a growth phenotype and implicating Trm82p in maintaining levels of active Trm8p. RNA 11:821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  22. Huang C, Wu G, Yu YT (2012) Inducing nonsense suppression by targeted pseudouridylation. Nat Protoc 7:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang C, Yu YT (2013) Synthesis and labeling of RNA in vitro. Curr Protoc Mol Biol. Chapter 4: Unit4 15

    Google Scholar 

  24. Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont ME, Phizicky EM, Snyder M, Grayhack EJ (2005) Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 19:2816–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao X, Yu YT (2004) Detection and quantitation of RNA base modifications. RNA 10:996–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank the members of the Yu laboratory for inspiring discussions. This work was supported by grants GM104077 and AG039559 (to Y.-T. Y.) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, C., Wu, G., Yu, YT. (2016). Purification and Functional Reconstitution of Box H/ACA Ribonucleoprotein Particles. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 1421. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3591-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3591-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3589-5

  • Online ISBN: 978-1-4939-3591-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics