Skip to main content

Mesenchymal Stem Cells for Osteochondral Tissue Engineering

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Mesenchymal stem cells (MSC) are of major interest in regenerative medicine, as they are easily harvested from a variety of sources (including bone marrow and fat aspirates) and they are able to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss the limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, current advances enable engineering of physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inpatient Surgery: National Center for Health Statistics (2013) http://www.cdc.gov/nchs/fastats/inpatient-surgery.htm. Accessed 20 Nov 2014

    Google Scholar 

  2. Orthopedic Instrumentation BioMed Trends (2010) http://www.biomedtrends.com/GetDetails.asp?CatName=Orthopedics

  3. Minzlaff P, Feucht MJ, Saier T et al (2014) Can young and active patients participate in sports after osteochondral autologous transfer combined with valgus high tibial osteotomy? Knee Surg Sports Traumatol Arthrosc [Epub ahead of print]

    Google Scholar 

  4. Hayes JS, Richards RG (2010) The use of titanium and stainless steel in fracture fixation. Expert Rev Med Devices 7:843–853

    Article  CAS  PubMed  Google Scholar 

  5. Barone DTJ, Raquez JM, Dubois P (2011) Bone-guided regeneration: from inert biomaterials to bioactive polymer (nano) composites. Polym Adv Technol 22:463–745

    Article  CAS  Google Scholar 

  6. Hip Fracture: Cleveland Clinic (2014) https://my.clevelandclinic.org/services/orthopaedics-rheumatology/diseases-conditions/hip-fracture. Accessed 20 Nov 2014

    Google Scholar 

  7. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:20–27

    Article  Google Scholar 

  8. Calori GM, Mazza E, Colombo M et al (2011) The use of bone-graft substitutes in large bone defects: any specific needs? Injury 42:S56–S63

    Article  PubMed  Google Scholar 

  9. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765

    Article  CAS  PubMed  Google Scholar 

  10. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  11. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  PubMed  Google Scholar 

  12. Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009–1014

    Article  CAS  PubMed  Google Scholar 

  13. Hansmann J, Groeber F, Kahlig A et al (2013) Bioreactors in tissue engineering – principles, applications and commercial constraints. Biotechnol J 8:298–307

    Article  CAS  PubMed  Google Scholar 

  14. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22:80–86

    Article  CAS  PubMed  Google Scholar 

  15. Vunjak-Novakovic G, Tandon N, Godier A et al (2010) Challenges in cardiac tissue engineering. Tissue Eng Part B Rev 16:169–187

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hutmacher DW, Schantz T, Zein I et al (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203–216

    Article  CAS  PubMed  Google Scholar 

  17. Wang YZ, Blasioli DJ, Kim HJ et al (2006) Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 27:4434–4442

    Article  CAS  PubMed  Google Scholar 

  18. Mauck RL, Nicoll SB, Seyhan SL et al (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9:597–611

    Article  CAS  PubMed  Google Scholar 

  19. Mauck RL, Yuan X, Tuan RS (2006) Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14:179–189

    Article  CAS  PubMed  Google Scholar 

  20. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  21. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  22. Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  23. Yoshimura H, Muneta T, Nimura A et al (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462

    Article  CAS  PubMed  Google Scholar 

  24. in't Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1445

    Article  Google Scholar 

  25. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  CAS  PubMed  Google Scholar 

  26. Caplan AI (1991) Mesenchymal stem-cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  27. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  28. Mauney JR, Volloch V, Kaplan DL (2005) Role of adult mesenchymal stem cells in bone tissue-engineering applications: current status and future prospects. Tissue Eng 11:787–802

    Article  CAS  PubMed  Google Scholar 

  29. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  30. Kreke MR, Huckle WR, Goldstein AS (2005) Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055

    Article  CAS  PubMed  Google Scholar 

  31. Bhumiratana S, Grayson WL, Castaneda A et al (2011) Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials 32:2812–2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui L, Liu B, Liu G et al (2007) Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 28:5477–5486

    Article  CAS  PubMed  Google Scholar 

  33. Jukes JM, Both SK, Leusink A et al (2008) Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci U S A 105:6840–6845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu HH, Peng HJ, Wu Y et al (2013) The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials 34:4404–4417

    Article  CAS  PubMed  Google Scholar 

  35. Yuan J, Cui L, Zhang WJ et al (2007) Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials 28:1005–1013

    Article  CAS  PubMed  Google Scholar 

  36. Kneser U, Polykandriotis E, Ohnolz J et al (2006) Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 12:1721–1731

    Article  CAS  PubMed  Google Scholar 

  37. Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27

    Article  CAS  PubMed  Google Scholar 

  38. Tsigkou O, Pomerantseva I, Spencer JA et al (2010) Engineered vascularized bone grafts. Proc Natl Acad Sci U S A 107:3311–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang L, Fan HB, Zhang ZY et al (2010) Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized beta-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 31:9452–9461

    Article  CAS  PubMed  Google Scholar 

  40. Correia C, Grayson WL, Park M et al (2011) In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLoS One 6:9

    Article  Google Scholar 

  41. Mueller MB, Tuan RS (2008) Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum 58:1377–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scotti C, Tonnarelli B, Papadimitropoulos A et al (2010) Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci U S A 107:7251–7256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scotti C, Piccinini E, Takizawa H et al (2013) Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci U S A 110:3997–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olsen BR, Reginato AM, Wang WF (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  CAS  PubMed  Google Scholar 

  45. Cartmell SH, Porter BD, Garcia AJ et al (2003) Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng 9:1197–1203

    Article  CAS  PubMed  Google Scholar 

  46. Grayson WL, Bhumiratana S, Cannizzaro C et al (2008) Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng Part A 14:1809–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sikavitsas VI, Bancroft GN, Holtorf HL et al (2003) Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci U S A 100:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grayson WL, Frohlich M, Yeager K et al (2010) Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci U S A 107:3299–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Freed LE, Marquis JC, Nohria A et al (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 27:11–23

    Article  CAS  PubMed  Google Scholar 

  50. Vunjak-Novakovic G, Martin I, Obradovic B et al (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17:130–1308

    Article  CAS  PubMed  Google Scholar 

  51. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  CAS  PubMed  Google Scholar 

  52. Mauck RL, Soltz MA, Wang CCB et al (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122:252–260

    Article  CAS  PubMed  Google Scholar 

  53. Huang AH, Stein A, Tuan RS et al (2009) Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A 15:3461–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sampat SR, Dermksian MV, Oungoulian SR et al (2013) Applied osmotic loading for promoting development of engineered cartilage. J Biomech 46:2674–2681

    Article  PubMed  PubMed Central  Google Scholar 

  55. O'Connell GD, Nims RJ, Green J et al (2014) Time and dose-dependent effects of chondroitinase ABC on growth of engineered cartilage. Eur Cell Mater 27:312–320

    PubMed  PubMed Central  Google Scholar 

  56. Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  CAS  PubMed  Google Scholar 

  57. Varghese S, Hwang NS, Canver AC et al (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 27:12–21

    Article  CAS  PubMed  Google Scholar 

  58. Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32:8771–8782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moutos FT, Freed LE, Guilak F (2007) A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 6:162–167

    Article  CAS  PubMed  Google Scholar 

  60. Bian L, Guvendiren M, Mauck RL et al (2013) Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci U S A 110:10117–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brunger JM, Huynh NPT, Guenther CM et al (2014) Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc Natl Acad Sci U S A 111:E798–E806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ratana S, Eton RE, Oungoulian SR et al (2014) Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc Natl Acad Sci U S A 111:6940–6945

    Article  Google Scholar 

  63. Pacifici M, Koyama E, Shibukawa Y et al (2006) Cellular and molecular mechanisms of synovial joint and articular cartilage formation. In: Zaidi M (ed) Skeletal development and remodeling in health, disease, and aging. Ann N Y Acad Sci 1068:74–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnstone B, Hering TM, Caplan AI et al (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  CAS  PubMed  Google Scholar 

  65. Sekiya I, Vuoristo JT, Larson BL et al (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 99:4397–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Elder SH, Cooley AJ Jr, Borazjani A et al (2009) Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model. Tissue Eng Part A 15:3025–3036

    Article  CAS  PubMed  Google Scholar 

  67. Kandel RA, Boyle J, Gibson G et al (1997) In vitro formation of mineralized cartilagenous tissue by articular chondrocytes. In Vitro Cell Dev Biol Anim 33:174–181

    Article  CAS  PubMed  Google Scholar 

  68. Lee WD, Hurtig MB, Kandel RA et al (2011) Membrane culture of bone marrow stromal cells yields better tissue than pellet culture for engineering cartilage-bone substitute biphasic constructs in a two-step process. Tissue Eng Part C Methods 17:939–948

    Article  CAS  PubMed  Google Scholar 

  69. Murdoch AD, Grady LM, Ablett MP et al (2007) Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of Scaffold-free cartilage. Stem Cells 25:2786–2796

    Article  CAS  PubMed  Google Scholar 

  70. Ofek G, Revell CM, Hu JC et al (2008) Matrix development in self-assembly of articular cartilage. PLoS One 3, e2795

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yu HS, Grynpas M, Kandel RA (1997) Composition of cartilagenous tissue with mineralized and non-mineralized zones formed in vitro. Biomaterials 18:1425–1431

    Article  CAS  PubMed  Google Scholar 

  72. Martin I, Miot S, Barbero A et al (2007) Osteochondral tissue engineering. J Biomech 40:750–765

    Article  PubMed  Google Scholar 

  73. Nooeaid P, Salih V, Beier JP et al (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16:2247–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schaefer D, Martin I, Jundt G et al (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46:2524–2534

    Article  PubMed  Google Scholar 

  75. Wang YZ, Kim UJ, Blasioli DJ et al (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26:7082–7094

    Article  CAS  PubMed  Google Scholar 

  76. Allan KS, Pilliar RM, Wang J et al (2007) Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng 13:167–177

    Article  CAS  PubMed  Google Scholar 

  77. Kandel RA, Grynpas M, Pilliar R et al (2006) Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a Sheep model. Biomaterials 27:4120–4131

    Article  CAS  PubMed  Google Scholar 

  78. Tuli R, Nandi S, Li WJ et al (2004) Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue Eng 10:1169–1179

    Article  CAS  PubMed  Google Scholar 

  79. Khanarian NT, Haney NM, Burga RA et al (2012) A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33:5247–5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mueller MB, Fischer M, Zellner J et al (2010) Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning. Cells Tissues Organs 192:158–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dickhut A, Pelttari K, Janicki P et al (2009) Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol 219:219–226

    Article  CAS  PubMed  Google Scholar 

  82. Farrell MJ, Fisher MB, Huang AH et al (2014) Functional properties of bone marrow-derived MSC-based engineered cartilage are unstable with very long-term in vitro culture. J Biomech 47:2173–2182

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pelttari K, Winter A, Steck E et al (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54:3254–3266

    Article  CAS  PubMed  Google Scholar 

  84. Johnson K, Zhu S, Tremblay MS et al (2012) A stem cell-based approach to cartilage repair. Science 336:717–721

    Article  CAS  PubMed  Google Scholar 

  85. Yano F, Hojo H, Ohba S et al (2013) A novel disease-modifying osteoarthritis drug candidate targeting Runx1. Ann Rheum Dis 72:748–753

    Article  CAS  PubMed  Google Scholar 

  86. Leijten J, Georgi N, Teixeira LM et al (2014) Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proc Natl Acad Sci U S A 111:13954–13959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ruan MZ, Erez A, Guse K et al (2013) Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med 5:17634

    Article  Google Scholar 

  88. Taniguchi N, Carames B, Kawakami Y et al (2009) Chromatin protein HMGB2 regulates articular cartilage surface maintenance via beta-catenin pathway. Proc Natl Acad Sci U S A 106:16817–16822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Alexander PG, Gottardi R, Lin H et al (2014) Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med 239:1080–1095

    Article  Google Scholar 

  90. Grayson WL, Bhumiratana S, Chao PHG et al (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthritis Cartilage 18:714–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu XG, Jiang HK (2013) Preparation of an osteochondral composite with mesenchymal stem cells as the single-cell source in a double-chamber bioreactor. Biotechnol Lett 35:1645–1653

    Article  CAS  PubMed  Google Scholar 

  92. Vunjak-Novakovic G, Meinel L, Altman G et al (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8:209–218

    Article  CAS  PubMed  Google Scholar 

  93. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44

    Article  CAS  PubMed  Google Scholar 

  94. Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328

    Article  CAS  PubMed  Google Scholar 

  95. Xie H, Cui Z, Wang L et al (2014) PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 20:1270–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the NIH (grants DE016525, EB002520, and AR061988 to G.V.N.), the A*STAR Graduate Academy in Singapore (graduate fellowship to J.N.), the NSF (graduate fellowship to J.B.), the Whitaker Foundation (fellowship to J.B.), and the Columbia University (Presidential Fellowship to J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Vunjak-Novakovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ng, J., Bernhard, J., Vunjak-Novakovic, G. (2016). Mesenchymal Stem Cells for Osteochondral Tissue Engineering. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics