Skip to main content

Methods and Strategies for Lineage Tracing of Mesenchymal Progenitor Cells

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Mesenchymal progenitors (MP) are found to varying extents in most tissues and organs. Their relationship to bone marrow-derived mesenchymal stem cells (MSCs) remains unclear, however, both populations appear to share a number of properties as defined by functional assays, clonogenic activity, and genetic and cell surface markers. MSCs were originally defined by their in vitro colony forming unit-fibroblast (CFU-F) activity and their ability to contribute to various mesenchymal lineages (i.e. cartilage, bone, and fat). MSCs also appear to exhibit some unique properties, in that expanded clones in the absence of bone-inducing factors generate bone spicules/organs in vivo. Subsequent analysis of these elements has demonstrated that the transplanted cells directly contribute to multiple mesenchymal lineages. Our ability to study MP and/or MSC behavior and lineage potential in vivo has been hampered by a lack of suitable Cre lines in which to effectively genetically mark and follow the fate and activity of these cells in development, growth, homeostasis and following injury or in disease. The emergence of several new genetic lines is enabling us to now address critical questions regarding MP/MSC location, behavior, function, and fate. The use of these lines and others in conjunction with suitable reporter lines will be described for MP/MSC cell fate analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  2. Friedenstein A, Kuralesova AI (1971) Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation 12:99–108

    Article  CAS  PubMed  Google Scholar 

  3. Friedenstein AJ, Deriglasova UF, Kulagina NN et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92

    CAS  PubMed  Google Scholar 

  4. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  5. Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435

    CAS  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  7. Bianco P, Cao X, Frenette PS et al (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  CAS  PubMed  Google Scholar 

  10. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bianco P, Robey PG (2015) Skeletal stem cells. Development 142:1023–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230

    Article  CAS  PubMed  Google Scholar 

  13. Joe AW, Yi L, Natarajan A et al (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uezumi A, Fukada S, Yamamoto N et al (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152

    Article  CAS  PubMed  Google Scholar 

  15. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  16. Berry R, Jeffery E, Rodeheffer MS (2014) Weighing in on adipocyte precursors. Cell Metab 19:8–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kfoury Y, Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16:239–253

    Article  CAS  PubMed  Google Scholar 

  18. Mendez-Ferrer S, Scadden DT, Sanchez-Aguilera A (2015) Bone marrow stem cells: current and emerging concepts. Ann N Y Acad Sci 1335:32–44

    Article  CAS  PubMed  Google Scholar 

  19. Ding L, Saunders TL, Enikolopov G et al (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kunisaki Y, Bruns I, Scheiermann C et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Greenbaum A, Hsu YM, Day RB et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Worthley DL, Churchill M, Compton JT et al (2015) Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160:269–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou BO, Yue R, Murphy MM et al (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park D, Spencer JA, Koh BI et al (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10:259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mathew SJ, Hansen JM, Merrell AJ et al (2011) Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138:371–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chong JJ, Chandrakanthan V, Xaymardan M et al (2011) Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9:527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Humphreys BD, Lin SL, Kobayashi A et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mederacke I, Hsu CC, Troeger JS et al (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bianco P (2014) "Mesenchymal" stem cells. Annu Rev Cell Dev Biol 30:677–704

    Article  CAS  PubMed  Google Scholar 

  31. Wosczyna MN, Biswas AA, Cogswell CA et al (2012) Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J Bone Miner Res 27:1004–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148:33–45

    Article  CAS  PubMed  Google Scholar 

  33. Blanpain C, Simons BD (2013) Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14:489–502

    Article  CAS  PubMed  Google Scholar 

  34. Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144

    Article  CAS  PubMed  Google Scholar 

  35. Muzumdar MD, Tasic B, Miyamichi K et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    Article  CAS  PubMed  Google Scholar 

  36. Rinkevich Y, Walmsley GG, Hu MS et al (2015) Skin fibrosis identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348:2151

    Article  Google Scholar 

  37. Prigge JR, Wiley JA, Talago EA et al (2013) Nuclear double-fluorescent reporter for in vivo and ex vivo analyses of biological transitions in mouse nuclei. Mamm Genome 2:24022199

    Google Scholar 

  38. Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  40. Madisen L, Mao T, Koch H et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stoller JZ, Degenhardt KR, Huang L et al (2008) Cre reporter mouse expressing a nuclear localized fusion of GFP and beta-galactosidase reveals new derivatives of Pax3-expressing precursors. Genesis 46:200–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bianco P (2015) Stem cells and bone: a historical perspective. Bone 70:2–9

    Article  PubMed  Google Scholar 

  43. Ono N, Ono W, Mizoguchi T et al (2014) Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell 29:330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tartaglia LA, Dembski M, Weng X et al (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    Article  CAS  PubMed  Google Scholar 

  45. Bonyadi M, Waldman SD, Liu D et al (2003) Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci U S A 100:5840–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Houlihan DD, Mabuchi Y, Morikawa S et al (2012) Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat Protoc 7:2103–2111

    Article  CAS  PubMed  Google Scholar 

  47. Morikawa S, Mabuchi Y, Kubota Y et al (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoch RV, Soriano P (2003) Roles of PDGF in animal development. Development 130:4769–4784

    Article  CAS  PubMed  Google Scholar 

  49. Berry R, Rodeheffer MS (2013) Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol 15:302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rock JR, Barkauskas CE, Cronce MJ et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108:E1475–E1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rivers LE, Young KM, Rizzi M et al (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401

    Article  CAS  PubMed  Google Scholar 

  52. Lee YH, Petkova AP, Konkar AA et al (2015) Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J 29:286–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quante M, Tu SP, Tomita H et al (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19:257–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Church RH, Krishnakumar A, Urbanek A et al (2015) Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J 466:55–68

    Article  CAS  PubMed  Google Scholar 

  55. Tsuji K, Bandyopadhyay A, Harfe BD et al (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38:1424–1429

    Article  CAS  PubMed  Google Scholar 

  56. Kassem M, Bianco P (2015) Skeletal stem cells in space and time. Cell 160:17–19

    Article  CAS  PubMed  Google Scholar 

  57. Petrova R, Joyner AL (2014) Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 141:3445–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kramann R, Schneider RK, DiRocco DP et al (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakagawa N, Duffield JS (2013) Myofibroblasts in fibrotic kidneys. Curr Pathobiol Rep 1:PMC3810972

    Article  Google Scholar 

  60. Brownell I, Guevara E, Bai CB et al (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8:552–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carney RS, Mangin JM, Hayes L et al (2010) Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala. Neural Dev 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  62. Akiyama H, Kim JE, Nakashima K et al (2005) Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A 102:14665–14670

    Article  CAS  PubMed  Google Scholar 

  63. Mizoguchi T, Pinho S, Ahmed J et al (2014) Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell 29:340–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Logan M, Martin JF, Nagy A et al (2002) Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33:77–80

    Article  CAS  PubMed  Google Scholar 

  65. Kawanami A, Matsushita T, Chan YY et al (2009) Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun 386:477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murao H, Yamamoto K, Matsuda S et al (2013) Periosteal cells are a major source of soft callus in bone fracture. J Bone Miner Metab 31:390–398

    Article  CAS  PubMed  Google Scholar 

  67. Ouyang Z, Chen Z, Ishikawa M et al (2013) Prx1 and 3.2kb Col1a1 promoters target distinct bone cell populations in transgenic mice. Bone 58:138–145

    Google Scholar 

  68. Krueger KC, Costa MJ, Du H et al (2014) Characterization of Cre recombinase activity for in vivo targeting of adipocyte precursor cells. Stem Cell Rep 3:1147–1158

    Article  CAS  Google Scholar 

  69. Sanchez-Gurmaches J, Hsiao WY, Guertin DA (2015) Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Rep 4(4):541–550

    Article  CAS  Google Scholar 

  70. Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244:305–318

    Article  CAS  PubMed  Google Scholar 

  71. Kalajzic Z, Liu P, Kalajzic I et al (2002) Directing the expression of a green fluorescent protein transgene in differentiated osteoblasts: comparison between rat type I collagen and rat osteocalcin promoters. Bone 31:654–660

    Article  CAS  PubMed  Google Scholar 

  72. Nakamura E, Nguyen MT, Mackem S (2006) Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn 235:2603–2612

    Article  CAS  PubMed  Google Scholar 

  73. Berry R, Church CD, Gericke MT et al (2014) Imaging of adipose tissue. Methods Enzymol 537:47–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brown CM (2007) Fluorescence microscopy—avoiding the pitfalls. J Cell Sci 120:1703–1705

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Michael Underhill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Scott, R.W., Underhill, T.M. (2016). Methods and Strategies for Lineage Tracing of Mesenchymal Progenitor Cells. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics