Skip to main content

Mass Spectrometry-Based Quantitative O-GlcNAcomic Analysis

  • Protocol
  • First Online:
Quantitative Proteomics by Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1410))

Abstract

The dynamic co- and post-translational modification (PTM) of proteins, O-linked β-d-N-acetylglucosamine modification (O-GlcNAcylation) of serine/threonine residues is critical in many cellular processes, contributing to multiple physiological and pathological events. The term “O-GlcNAcome” refers to not only the complete set of proteins that undergo O-GlcNAcylation but also the O-GlcNAc status at individual residues, as well as the dynamics of O-GlcNAcylation in response to various stimuli. O-GlcNAcomic analyses have been a challenge for many years. In this chapter, we describe a recently developed approach for the identification and quantification of O-GlcNAc proteins/peptides from complex samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    Article  CAS  PubMed  Google Scholar 

  2. Hardivillé S, Hart GW (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208–213

    Article  PubMed Central  PubMed  Google Scholar 

  3. Harwood KR, Hanover JA (2014) Nutrient-driven O-GlcNAc cycling—think globally but act locally. J Cell Sci 127:1857–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dias WB, Hart GW (2007) O-GlcNAc modification in diabetes and Alzheimer’s disease. Mol Biosyst 3:766–772

    Article  CAS  PubMed  Google Scholar 

  5. Ma J, Hart GW (2013) Protein O-GlcNAcylation in diabetes and diabetic complications. Expert Rev Proteomics 10:365–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Vaidyanathan K, Wells L (2014) Multiple tissue specific roles for the O-GlcNAc post-translational modification in the induction of and complications arising from type II diabetes. J Biol Chem 289:34466–34471

    Article  PubMed Central  PubMed  Google Scholar 

  7. Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11:678–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ma Z, Vosseller K (2014) Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. J Biol Chem 289:34457–34465

    Article  PubMed Central  PubMed  Google Scholar 

  9. Singh JP, Zhang K, Wu J, Yang X (2015) O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett 356:246–250

    Google Scholar 

  10. Lazarus BD, Love DC, Hanover JA (2009) O-GlcNAc cycling: implications for neurodegenerative disorders. Int J Biochem Cell Biol 41:2134–2146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yuzwa SA, Vocadlo DJ (2014) O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer’s disease and beyond. Chem Soc Rev 43:6839–6858

    Article  CAS  PubMed  Google Scholar 

  12. Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes: evidence for O-linked GlcNAc. J Biol Chem 259:3308–3317

    CAS  PubMed  Google Scholar 

  13. Wang Z, Hart GW (2008) Glycomic approaches to study GlcNAcylation: protein identification, site-mapping, and site-specific O-GlcNAc quantitation. Clin Proteomics 4:5–13

    Article  CAS  Google Scholar 

  14. Zachara NE (2009) Detecting the “O-GlcNAc-ome”: detection, purification, and analysis of O-GlcNAc modified proteins. Methods Mol Biol 534:251–279

    CAS  PubMed  Google Scholar 

  15. Ma J, Hart GW (2014) O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics 11:8

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wang Z, Pandey A, Hart GW (2007) Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics 6:1365–1379

    Article  CAS  PubMed  Google Scholar 

  17. Zachara NE, Molina H, Wong KY, Pandey A, Hart GW (2011) The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 40:793–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zhao P, Viner R, Teo CF et al (2011) Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J Proteome Res 10:4088–4104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Vosseller K, Trinidad JC, Chalkley RJ et al (2006) O-Linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics 5:923–934

    Article  CAS  PubMed  Google Scholar 

  20. Chalkley RJ, Thalhammer A, Schoepfer R et al (2009) Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci U S A 106:8894–8899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Trinidad JC, Barkan DT, Gulledge BF et al (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11:215–229

    Article  PubMed Central  PubMed  Google Scholar 

  22. Nagel AK, Schilling M, Comte-Walters S et al (2013) Identification of O-linked N-acetylglucosamine (O-GlcNAc)-modified osteoblast proteins by electron transfer dissociation tandem mass spectrometry reveals proteins critical for bone formation. Mol Cell Proteomics 12:945–955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vocadlo DJ, Hang HC, Kim EJ et al (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 100:9116–9121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sprung R, Nandi A, Chen Y et al (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4:950–957

    Article  CAS  PubMed  Google Scholar 

  25. Hahne H, Sobotzki N, Tamara N et al (2013) Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J Proteome Res 12:927–936

    Article  CAS  PubMed  Google Scholar 

  26. Zaro BW, Yang YY, Hang HC et al (2011) Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc Natl Acad Sci U S A 108:8146–8151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Boyce M, Carrico IS, Ganguli AS et al (2011) Metabolic cross-talk allows labeling of O-linked β-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc Natl Acad Sci U S A 108:3141–3146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Khidekel N, Arndt S, Lamarre-Vincent N et al (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125:16162–16163

    Article  CAS  PubMed  Google Scholar 

  29. Khidekel N, Ficarro SB, Peters EC et al (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci U S A 101:13132–13137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Khidekel N, Ficarro SB, Clark MC et al (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3:339–348

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Udeshi ND, O’Malley M et al (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9:153–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wang Z, Udeshi ND, Slawson C et al (2010) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 3:ra2

    PubMed Central  PubMed  Google Scholar 

  33. Parker BL, Gupta P, Cordwell SJ et al (2011) Purification and identification of O-GlcNAc-modified peptides using phosphate-based alkyne CLICK chemistry in combination with titanium dioxide chromatography and mass spectrometry. J Proteome Res 10:1449–1458

    Article  CAS  PubMed  Google Scholar 

  34. Alfaro JF, Gong CX, Monroe ME et al (2012) Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci USA 109:7280–7285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wells L, Vosseller K, Cole RN et al (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1:791–804

    Article  CAS  PubMed  Google Scholar 

  36. Vosseller K, Hansen KC, Chalkley RJ et al (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5:388–398

    Article  CAS  PubMed  Google Scholar 

  37. Ramirez-Correa GA, Jin W, Wang Z et al (2008) O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. Circ Res 103:1354–1358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wang Z, Park K, Comer F et al (2009) Site-specific GlcNAcylation of human erythrocyte proteins: potential biomarker(s) for diabetes. Diabetes 58:309–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Overath T, Kuckelkorn U, Henklein P et al (2012) Mapping of O-GlcNAc sites of 20S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol Cell Proteomics 11:467–477

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Original research in this work was supported by NIH P01HL107153, R01DK61671, and NIH N01-HV-00240 (to G.W.H.). We appreciate Dr. Zihao Wang for his significant contribution for the initial development of this protocol and for his critical reading of the manuscript. Helpful discussion from the Hart laboratory is acknowledged. We also thank Drs. Feng Yang and Richard Smith and their coworkers at the Pacific Northwest National Laboratory (Richland, WA) for valuable comments of the enrichment protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W. Hart Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ma, J., Hart, G.W. (2016). Mass Spectrometry-Based Quantitative O-GlcNAcomic Analysis. In: Sechi, S. (eds) Quantitative Proteomics by Mass Spectrometry. Methods in Molecular Biology, vol 1410. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3524-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3524-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3522-2

  • Online ISBN: 978-1-4939-3524-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics