Skip to main content

The Use of ClusterMine360 for the Analysis of Polyketide and Nonribosomal Peptide Biosynthetic Pathways

  • Protocol
  • First Online:
Nonribosomal Peptide and Polyketide Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1401))

Abstract

Polyketides and nonribosomal peptides constitute two large families of microbial natural products. Over the past 20 years a broad range of microbial polyketide and nonribosomal peptide biosynthetic pathways have been characterized leading to a surfeit of genetic data on polyketide and nonribosomal peptide biosynthesis. We developed the ClusterMine360 database, which stores the antiSMASH-based annotation of gene clusters in the NCBI database, linking the structure of the natural product to the biosynthetic gene cluster. This database is searchable and enables the user to access multiple sequence files for phylogenetic analysis of polyketide and nonribosomal peptide biosynthetic genes. Herein we describe how to add compound families and gene clusters to the database and search it using key words or structures to identify specific gene clusters. We also describe how to download multiple sequence files for specific catalytic domains from polyketide and nonribosomal peptide biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romero D, Traxler MF, López D et al (2011) Antibiotics as signal molecules. Chem Rev 111:5492–5505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Davies J (2013) Specialized microbial metabolites: functions and origins. J Antibiot 66: 361–364

    Article  CAS  PubMed  Google Scholar 

  3. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Gulder TAM, Freeman MF, Piel J (2011) The catalytic diversity of multimodular polyketide synthases: natural product biosynthesis beyond textbook assembly rules. Top Curr Chem. doi:10.1007/128_2010_113

    PubMed  Google Scholar 

  5. Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716

    Article  CAS  PubMed  Google Scholar 

  6. Hur GH, Vickery CR, Burkart MD (2012) Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 29:1074–1098

    Article  CAS  PubMed  Google Scholar 

  7. Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109

    Article  CAS  PubMed  Google Scholar 

  8. Callahan B, Thattai M, Shraiman BI (2009) Emergent gene order in a model of modular polyketide synthases. Proc Natl Acad Sci U S A 106:19410–19415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Medema MH, Blin K, Cimermancic P et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic acids Res 39:W339–W346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Blin K, Medema MH, Kazempour D et al (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212

    Article  PubMed Central  PubMed  Google Scholar 

  11. Li MHT, Ung PMU, Zajkowski J et al (2009) Automated genome mining for natural products. BMC Bioinformatics 10:185

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ziemert N, Podell S, Penn K et al (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7:e34064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kim J, Yi G-S (2012) PKMiner: a database for exploring type II polyketide synthases. BMC Microbiol 12:169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Khaldi N, Seifuddin FT, Turner G et al (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol. doi:10.1016/j.fgb.2010.06.003

    PubMed Central  PubMed  Google Scholar 

  15. Conway KR, Boddy CN (2013) ClusterMine360: a database of microbial PKS/NRPS biosynthesis. Nucleic Acids Res 41: D402–D407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bolton EE, Wang Y, Thiessen PA et al (2008) Chapter 12—PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 4:217–241

    Article  CAS  Google Scholar 

  17. Wang Y, Xiao J, Suzek TO et al (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Info Model 28:31–36

    Article  CAS  Google Scholar 

  19. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Info Model 29:97–101

    Article  CAS  Google Scholar 

  20. Weininger D (1990) SMILES. 3. DEPICT. Graphical depiction of chemical structures. J Chem Info Model 30:237–243

    Article  CAS  Google Scholar 

  21. O’Brien RV, Davis RW, Khosla C et al (2014) Computational identification and analysis of orphan assembly-line polyketide synthases. J Antibiot 67:89–97

    Article  PubMed Central  PubMed  Google Scholar 

  22. Brikun IA, Reeves AR, Cernota WH et al (2004) The erythromycin biosynthetic gene cluster of Aeromicrobium erythreum. J Ind Microbiol Biotechnol 31:335–344

    Article  CAS  PubMed  Google Scholar 

  23. Oliynyk M, Samborskyy M, Lester JB et al (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25:447–453

    Article  CAS  PubMed  Google Scholar 

  24. Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nguyen T, Ishida K, Jenke-Kodama H et al (2008) Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26:225–233

    Article  CAS  PubMed  Google Scholar 

  26. Charlop-Powers Z, Owen JG, Reddy BVB et al (2014) Chemical-biogeographic survey of secondary metabolism in soil. Proc Natl Acad Sci U S A 111:3757–3762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Luo K, Du G-P, Zhao Z-X et al (2010) Phylogenetic analysis of type I polyketide synthase and non-ribosomal peptide synthase genes from Mila Mountain in Tibet plateau. J Hunan Agric Univ 36:506–511

    Article  CAS  Google Scholar 

  28. Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24

    Article  CAS  PubMed  Google Scholar 

  29. Jenke-Kodama H, Sandmann A, Müller R et al (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22: 2027–2039

    Article  CAS  PubMed  Google Scholar 

  30. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552

    Article  CAS  PubMed  Google Scholar 

  33. Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321

    Article  CAS  PubMed  Google Scholar 

  34. Gerth K, Bedorf N, Höfle G et al (1996) Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J Antibiot 49: 560–563

    Article  CAS  PubMed  Google Scholar 

  35. Hardt IH, Steinmetz H, Gerth K et al (2001) New natural epothilones from Sorangium cellulosum, strains So ce90/B2 and So ce90/D13: isolation, structure elucidation, and SAR studies. J Nat Prod 64:847–856

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Xu Y, Maine EA et al (2008) Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem Biol 15:1328–1338

    Article  CAS  PubMed  Google Scholar 

  37. Zhou H, Qiao K, Gao Z et al (2010) Insights into radicicol biosynthesis via heterologous synthesis of intermediates and analogs. J Biol Chem 285:41412–41421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Xue Y, Zhao L, Liu HW et al (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci U S A 95:12111–12116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Xue Y, Sherman DH (2000) Alternative modular polyketide synthase expression controls macrolactone structure. Nature 403:571–575

    Article  CAS  PubMed  Google Scholar 

  40. Fisch KM, Gurgui C, Heycke N et al (2009) Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat Chem Biol 5:494–501

    Article  CAS  PubMed  Google Scholar 

  41. Nicolaou K, Boddy C, Bräse S et al (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem Int Ed Engl 38:2096–2152

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by NSERC and an Early Researcher Award from the Province of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher N. Boddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tremblay, N., Hill, P., Conway, K.R., Boddy, C.N. (2016). The Use of ClusterMine360 for the Analysis of Polyketide and Nonribosomal Peptide Biosynthetic Pathways. In: Evans, B. (eds) Nonribosomal Peptide and Polyketide Biosynthesis. Methods in Molecular Biology, vol 1401. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3375-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3375-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3373-0

  • Online ISBN: 978-1-4939-3375-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics